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ABSTRACT

This is athO—part study on the plastic deformation of
the fiber-reinforced metal métrix composites.

In the first part of the study, a plasticity theory is
formulated to predict analytically the macroscopic and microscopic
responses of the unidirectional fiber-reinforced metal matrix
composites, loaded by axisymmetric composite stress states. The
composites are made of isotropic, linearly elastic fibers, and
elastic-plastic, nonhardening matrix of Mises type, and are
assumed to be both plastically extensible and compressible. It
is shown that the unidirectional composites experience kinematic
hardening when loaded by axisymmetric composite stresses. The
hardeﬁing and flow rﬁles governing the kinematic hardening are
formulated. The results obtained by the hardening and flow rules
are compared with exact plasticity solutions based on the finite
.element method._'A very good agreement. is obtained both for pro-
portional and general loading regimes. An approximate method
for the determination of microstresses in the unidirectional

composites under axisymmetric loading is described.




The plasticity theory is used to solve micromechanics
problems which arise as a result of heat treatment of the com-
posites during fabrication. The residual microstresses and the
yield surfaces of several heat-treated unidirectional metal
matrix composites are predicted by analytical simulation of
the heat treatment sequences. The results obtained for a heat-
treated tungsten-aluminum composite are compared with existing
experimental work to show that the analytical predictions are
very accurate. In addition, new heat treatment sequences that
may improve the properties of unidirectional boron-aluminum com-
posites are described.

The second part of the study is concerned with composite
laminates. Specifically, solution procedures are described for
the determination of hicrostresses in the laminae, and in the
fiber crossover regions at the interfaces between the laminae.
Particular solutions are presented for the 0-90 deg. B-Af lam-
inates. The local microstresses, and the initial yield surfaces
of the laminates are found for the combinations of applied com-
posite stresses which are frequently encountered in practical

applications.

ii




TABLE OF CONTENTS

ABSTRACT

ACKNOWLEDGMENT
LIST OF FIGURES
LIST OF TABLES

PART I: PLASTICITY THEORY OF UNIDIRECTIONAL FIBER-
REINFORCED METAL MATRIX COMPOSITES
CHAPTERS |
I. INTRODUCTION
" 1.1 Composite Models, 3 - .
1.2 Analysis of Composite Models, 4
1.3 Elastic Behavior, 6
1.4 Plastic Behavior, ‘8
II. THE PLASTICITY THEORY OF COMPOSITES
2.1 Introduction, 12
2.2 The Loading Surface, 1U4
2.3 The Plasticity Equations, 22
ITI. THE AXISYMMETRIC PLASTICITY THEORY
3.1 Introduction, 25 ‘
3.2 Micro- and Macro-Stress Correspondence, 26
3.3 The Hardening Rules, 31

3.3.1 Hardening Rule I, 32
3.3.2 Hardening Rule II, 35

The Strains, 40

w W
. L
v =

3.5.1 Exact Solution, 44, _
3.5.2 Approximate Solutions, 45
3.5.3 Results and Comparison, 46

3.6 Plastic Dilatation, 50

iii

PAGE

vi
vii

x1i

12

25

Comparison of Approximate and Exact Solutions, by




Contents PAGE
3.7 Discussion, 51

IV. DETERMINATION OF MICROSTRESSES : ) 54
.1 The Model, 54 ' |
The Loading, 55
Microstress Evaluation, 56
Numerical Results, 62
The Completely Plastic State, 66
.6 Discussion, 67
V. THERMOPLASTIC DEFORMATION AND RESIDUAL MICROSTRESSES
IN HEAT—TREATED COMPOSITES 69
Introduction, 69

Ul & = =
U &= W n

5-1
5-2 The Thermo-Mechanical Analogy, 71

5-3. Solution Procedures, T4

5-4., Verification of Theoretical Predictions, 75
5-5 Thermal Stresses in 6061 AL-B Composites, 78
5-6 Thermal Stresses in 7075 AL-B Composites, 81
5-7

Thermal Expansion Coefficients for B-AfL
Composites, 83

5-8. The Effects of Residual Microstresses on the
Fatigue Limits.of the B-Af Composites, 84

5-9. Conclusions, 86
VI. SUMMARY, GENERAL DISCUSSION, AND RECOMMENDED
RESEARCH 88
6.1 Summary, 88
6.2 General Discussion, 91
6.3 Recommended Research, 9l

PART II: PLASTICITY THEORY OF MULTILAYERED COMPOSITES -

INITIAL YIELDING , _ 96
VII. INTRODUCTION 97
VIII. REGULAR SOLUTION : ’ 99

8.1 Solution for Normal Stresses, 100
8.2 Solution for Shear Stresses, 104
8.3 Microstresses for Regular Solution, 108

iv




Contents

IX.

8.4 Construction of Initial Yield Surfaces, 112
CROSS-OVER SOLUTION

9.1 Solution Method, 115

9.2 Material Planes of Symmetry, 117

9.3 The Two-Layer Method, 119 |

9.4 The One-Layer Method, 122

9.5 Milcrostresses for Cross-Over Problem, 127
RESULTS, DISCUSSION, AND CONCLUSIONS

10.1 Results, 130

1
1
1

REFERENC
APPENDIC
I.
IT.
ITT.
Iv.

VI.
VII.
VIII;
IX.

0.2 Discussion, 144
0.3 Conclusions, 145

0.4 .General Remarks and Suggestions for Future
Researchers, 146 '

ES
ES

Elastic Constants, 156

Residual Stress Flelds, 158

Constants of Hardening Rules,.162
Yielding with Residual Stresss, 164

Simple Microstress Solution, 168

Cylinder Under Internal Pressure (Plane Strain), 169

Modification of Hardening Rules, 175
Illgstration of Thermo-Mechanical Analogy, 178
Thermal Expansion Coefficients, 182 |

Figures, 186

PAGE

114

130

150
156




ACKNOWLEDGMENT

The autﬁors'wiSh to acknowledge the financial support
of this work by the U. S. Army Materials and Mechanics Research
Cénter, and the scientific supervision of Dr. John M. Slepetz.
Dr. E. Lenoe made many useful suggestions in the course of this
investigation. Professor Senol Utku provided advice on the use
of the ELAS computer program, and on several aspects of the
numerical solutions.

| The theoretical foundation of the present work was

dévelbped under financial sponsorship by the U. S. Army Research
Office. It is summarized for completeness in Chapters III and

IV.




FIGURE

l-lc

3-3.

3-4.

3-5.

3-7.

3-8.

LIST OF FIGURES

A Regular Hexagonal Model of a Fiber-Reinforced
Composite, and Repeating Elementary Domains.

Schematic representation of Stress Increments in
the Composite, and Deviatoric Stress Planes.

Variation of Directions of Local Stress Vectors at
the Interface of a Composite Cylinder for Loading

.along Radial Paths I, = BI

Composite Stress-Strain Curves Obtained for Pro-
portional Loading I = BI., from Hardening Rule I
(Dashed Lines), and from the ELAS65 Finite Element

£

Solution (Solid Lines).  B-Af composite, V_ = 0.30,

Y = 40,000 psi.

Kinematic Motlion of Composite Loading Surfaces of
the B-AL Composite Loaded along Zig-Zag Path I.

Total and Elastic Composite Strains for the B-AL
Composite Loaded along Zig-Zag Path I. .

Positlons of the Centers of Loading Surfaces for the

Be-Af Composite at Selected Loading Points of the
Zig~-Zag Path II.

Total and Elastic Composite Strains for the Be-AfL
Composite Loaded along Zig-Zag Path II.

The Ratio of Plastic and Elastio Dilatations
dEkkp/dEkk and the Elastic Bulk Compliance

k €/4T for the B- AL Composite as Functions
of Ene A%él = tan~18, for Proportional Loading
I2 = BIl

vii

PAGE

186

187

188

189

190

191

192

193

194




FIGURE
h-1.

5-1.

5-2.
5-3.

5-4.

5-T.

5-8.

5-10.

PAGE

The Initial Yield Surface, and the Complete Plas-
ticity Surface for Proportional Loading of a Be-AlL
Composite. : : 195

The Initial Yield Surface, and the Complete Plas-

ticity Surface for Proportional Loading of a B- AL
Composite. (0 Indicates Points Calculated by the A
Finite Element Method.) 196

Thermo-mechanical Analogy Illustrating the Two-Part
Solution for Temperature Change in the Composite

and Volume Changes in the Matrix due to Metallurg—

ical Transformations. 197

The Elementary Composite Domain of the Hexagonal
Model in Figure 1-1 for Axisymmetric Problems, and
the Finite Element Mesh. 198

Cross Section of an Elastic-Plastic Composite Cylinder

Model of a Composite Loaded by Axisymmetric Composite
Stresses Il and 12. : 199

Data for the T6M Treatment of 7075 AZ-B Composite
Required for the Solution of the Heat Treatment
Problem. 200

Microstresses at the Fiber-Matrix Interface, and the
Location of the Elastic-Plastic Boundary (r = c)

in the Matrix During Heat Treatment of the 2024- T6

Af-W Composite. _ - 201

Microstress Distribution after Heat Treatment in the
Cylinder Model (Figure 5-3) of the 2024-T6 AL-W
Composite. 202

Uniaxial Tensile Stress-Strain Curves of the Tungsten
Fiber and the Aluminum Matrix. 203

Comparison of the Calculated and Experimentally Meas-
ured Average Microstresses and Composite Stresses
During a Tension Test of a 2024-T6 AL-W Composite.
Experimental Data by Cheskis and Heckel, Ref. [46]. 204

Loading Surfaces at Various Stages of Heat Treatment
and During a Tension Test of the 2024-T6 AL-W Compos-
ite. - _ 205

Composite Thermal'Expansion Coefficients in the Axial

) and Transverse (a o) Directions During the Heat
Tr%%tment of the 2024-T6 AL-W Composite 206

viit




FIGURE ‘ PAGE

5-11. Microstresses at the Fiber-Matrix Interface, and the
‘Location of the Elastic-Plastic Boundary (r = c) in
the Matrix During Heat Treatment of the 6061-T6 AL-B
Composite. 207

5-12. Microstress Distribution after Heat Treatment in the
Cylinder Model (Figure 5-3) of the 6061-T6 AL-B
Composite. 208

5-13. Microstresses at the Fiber-Matrix Interface, and the
Location of the Elastic-Plastic Boundary (r = c) in
the Matrix During the Heat Treatment of the 6061-T6M
A2-B Composite. 209

5-14. Microstress Distfibution after Heat Treatment in the
Cylinder Model (Figure 5-3) of the 6061-T6M AL-B
Composite. 210

5-15. Equivalent Stress at the Fiber-Matrix Interface, and
_the Location of the Elastic-Plastic Boundary in the
Matrix During: (A) Heat Treatment of the Matrix to
the T6M Temper, (B) A Subsequent Cooling Cycle to =320
deg. F.; (C) A Subsequent Cooling Cycle to -450 deg.

F. for a 6061 AL-B Composite : 211

5-16. Microstress Distribution in the Composite Cylinder
Model (Figure 5-3) of the 6061-T6M AL-B Composite,
after Completion of a Cooling Cycle to -320 deg. F. 212

5-17. Microstress Distribution in the Composite Cylinder
Model (Figure 5-3) of the 6061-T6M AL-B Composite,
after Completion of a Cooling Cycle to -450 deg. F. 213

5-18. Yield (Loading) Surfaces at Various Stages of Heat
Treatment of the 6061-T6M AL-B Composite. 214

5-19. The Matrix Yield Stress, and the Unit Dimensional
Change in a Quenched 7075 AL Alloy, as Functions of
Time at the Aging Temperature of 250 deg. F. 215

5-20. Microstresses at the Fiber-Matrix Interface, and
the Location of the Elastic-Plastic Boundary (r = c)
in the Matrix During Heat Treatment of the 7075-T6
AL-B Composite. ©Note the Effect of the Dimensional
Change at the Aging Temperature. 216

5-21. Microstress Distribution after Heat Treatment in
the Cylinder Model (Figure 5-3) of the 7075-T6 AL-B
Composite. Dotted Lines and the Numbers in Paren-
theses Correspond to AL/L = 0. 217

1x




FIGURE o PAGE

5-22. Microstresses at the Fiber-Matrix Interface, and the
Location of the Elastic-Plastic Boundary (r = c¢) in
the Matrix During Heat Treatment of the 7075-T6M AZ-B
Composite. Note the Effect of the Dimensional Change
at the Aging Temperature. 218

5=23. Microstress Distribution after Heat Treatment in the
Cylinder Model (Figure 5-3) of the 7075-T6M AL-B
Composite (AL/L = -260 Microinch/Inch). 219

5-24. Yield (Loading) Surfaces at Various Stages of Heat
Treatment of the 7075-T6 AL-B, (2), and 7075-T6M AL-B,
(4), Composites. 220

£-25. Composite Thermal Expansion Coefficients in the Axial
(0ecg) and Transverse (oct) Directions During Heat
Treatment of the 6061-T6 AL-B, and 6061-T6M AL-B
Composites. 221

5-26. Composite Thermal Expansion Coefficients in the
.Axial (opg5) and Transverse (oc¢g) Directions During
Heat Treatment of the 7075-T6 AL-B, and 7075-T6M
AZL-B Composites. ' 222

5-27. Expected Forms of the Goodgan Diagram for the
6061 AL-B Composites at 10° Cycles of the Uniaxial
Loading 1n the Fiber Direction. _ . 223

5-28. Expected Forms of the Goodman Diagrams for the 7075
AL-B Composites at 106 Cycles of the Uniaxial Loading

in the Fiber Direction. ‘ 224
8-1. One-Half of a Three Layer Balanced Composite Made of

Two Anisotropic Materials U and L. _ 225
8-2. Isometric Projection of the Layer-Layer Interface

of a 0-90 Multilayered Composite Made of Unidirec-~
~ tional Hexagonal Composites, and the Elementary
"#olume Domains for the Cross-Over and Regular Solu-

tions. . . 226
g-1. Schematic Representation of a Material Plane of

Symmetry in a Heterogeneous Solid Made of a Matrix

and Cylindrical or Spherical Inclusions. 227

9-2. An Elementary Model for the Cross-Over Problem of
the Multilayered Composite Shown in Figure 8-2. 228

9-3. LayeréLayer Interface of the Elementary Model Shown
in Figure 9-2. ' - 229

10-1. Finite Element Mesh for the Cfoss—Over Solution of
‘ "the Multilayered Composite by Two-Layer Method. 230

X




FIGURE

10-2.
10-3.
10-4.
10-5.
10-6.
10-7.

10-8.

10—90
10-10.

10-11.

Microstress Distribution 1n the Matrix

PAGE

at the

Fiber-Matrix Interface in the Lower Layer of a

Multilayered B-AZ (Vf = 0.3) Composite

Micérostress Distribution in the Matrix

‘Matrix Interface in the Lower Layer of

B-AL (Vf = 0.3) Composit& Under S

22°
Microstress Distribution in the Matrix
Matrix Interface in the Lower Layer of
B-AL (Vf = 0.3) Composite Under 833.

Microstress Distribution in the Matrix
Matrix Interface in the Lower Layer of
A-AL (Vf = 0.3) Composite Under 312.

Microstress Distribution in the Matrix
Matrix Interface in the Lower Layer of
B-AL (Vf = 0.3) Composite Under 513.

Microstress Distribution in the Matrix

Matrix Interface in the Lower Layer of
B-AL (Vf = 0.3) Composite Under 823.

Under Sll. 231

at the Fiber-

a Multilayered
232

of the Fiber-
a Multilayered
233

at the Fiber-
a Multilayered
) 234

of the Fiber-
a Multilayered
235

at the Fiber-
~a Multilayered

Initial Yield Surfaces for a Multilayered B-AL

(Ve =
Stress Plane.
Y is the Matrix Yield Stress.

0.3) Composite Loaded in S

Initial Yield Surfaces for the
(V. = 0.3) Composite Loaded in 811-833
Stress Plane. '
Initial Yield Surfaces for the
(Vo = 0.3) Composite Loaded in S
Stress Plane.

S12

117
Initial Yield Surfaces for the
(V. = 0.3) Composité Loaded in S
Stress Plane.

S

117°13

xi

-3
c/o Indicates Croéé—oéér

Multilayered B-Al
Multilayered B-Af

Multilayered B-AZ

236

Composite

Solution and

237

Composite
g 238

Composite
239

Composite
‘ 240




LIST OF TABLES

TABLES ' ' PAGE
4-1. Microstresses in the Matrix of the B-A{£ Composite
Cylinder (V¢ = 0.3) at Selected Points of the
Loading Path of Figure 3-4. (Stresses in 103 psi). 63
§-2, Microstresses in the Matrix of the BeAf Composite
Cylinder (Vg = 0.5)at Selected Points of the
Loading Path of Figure 3-6- . (Stresses 1n 103 psi). 65
9-1. Boundary Conditions on a Material Plane of Symmetry. 118
9-2. Boundary Conditions for a Two-Layer Model. 121
9-3. Boundary Conditions for a One-Layer Model. 128

10-1. Cross-Over Problem, B-AL (V =_0.30)-w Microstress .
Distribution for Composite gtress S11 = 100. 132

10-2. Cross-Over Problem, B-Af (V. = 0.30) - Microstress

Distribution for Composite Stress 822 = 100. 134
10-3. Cross-Over Problem, B-Af (V. = 0.30) -~ Microstress
Distribution for Composite 3Stress S33 = 100. 136
10-4. Cross-Over Problem, B-AZ (V. = 0.30) - Microstress .
Distribution for Composite §tress 812 = 100. 138
10-5. Cross-Over Problem, B-AL (V. = 0.30) - Microstress
Distribution for Composite §tress 813 = 100. 140
10-6. Cross-Over Problem, B—AK‘(Vf = 0.30) - Microstress
Distribution for Composite Stress 823 = 100. 142
I. Coefficients of [A] and [k] Matrices. , 157
IIT. Coefficients of k, H', and H''. 163

x11




PART I

PLASTICITY THEORY UNIDIRECTIONAL
FIBER-REINFORCED METAL MATRIX

COMPOSITES . '




CHAPTER I

INTRODUCTION

Composites with their high strength to density, and
stiffness to density ratios have become very useful in many
technological applications. From the engineering point of view
a composite may be defined as "a man-made material, consisting
of at least two mechanically distinct materials with distinct
interface separating the constituents, the properties of which
could ﬁot be achieved by any one of the constituents acting alone”.
An important class of composites consists of a softer, low modu-
lus métrix,'and stiffer high modulus inclusions. The inclusions
may be of arbitrary shape or of specified geométry. They may be
distributed in the matrix randomly or form a regular array.

Depending upon fhe shape of the iﬁclusions, composites
" can be classified iﬁto two major types: particle-reinforced
composites, and fiber—réihfbrced composites. As the names imply,
in partlcle reinforced composites, the 1nclu51ons are in the form
of flne partlcles, and in fiber-reinforced comp051tes the inclu-
sions are in the form of thin fibers. The size of the particles
and the diameter of the flber may range from a fraction of a
micron to several mils. Only the fiber- relnforced composites are

considered in the present study.

(2) . ‘




3

The main advantage in using composites is derived from
their superior mechanical properties such as stiffness, tough-
ness, yield and ultimate strengths, etc. By varying the volume
fraction of the inclusions, their geometry and shape, and the
material selection for the matrix and incluéions, one could

achieve many desired combinations of the mechanical properties.

’

1.1 Composite Models

To utilize a composite in structural applications, one
must be able to specify its mechanical properties. For this
purpose, the heterogeneous composite is idealized as a homogen-
eous anisotropic material, such that the mechanical properties
of the idealized homogeneous anisotropic material are equal to
some “average" properties of the composite. The homogeneous
anisotropic material is termed as an "effective material” (Rosen
{1]) for the composite. The'idealization of the composite, by
the effective material/ is juStified frombthe consideration that
“the lateral dimensions of the inclusions (particles or fibers)
are extremely sﬁall when compared to the dimensions of the
structure, such as the thiékness of a plate'made of the compos-
ité.\ Thﬁs; by aefinition, the responsé of a s£ru¢ture made of
the effective material fo imposed boundary tractions or displace-
ments is equal to the average response.of the same structure made

‘of the actual composite.




Strictly speaking, the constituents in a composite are
randomly distributed in'any giQen domain. Thus, the physical
constants of the material are, in general, random space func-
‘tions. Thus, the analysis of the composite, even under the
simple boundary conditions required for the determination of the
‘mechanical constants of the effective material presents formid-
able difficulties. Consequently, the composite is often ideal-
‘ized by a model consisting of a matrix in which the inclusions
of a specified geometry form regular arrayé. The solution of
the composite required for the determinatibn of the properties
of the effective material isithen obtained by analyzing a
"Representative Volume Element", which is defined by a repeating
domain of the idealized composite model. Some commonly used
idealizations of fiber—reinforéed composites [2-10] have been:
circular fibers forming hexagonal arrays in the matrix; circular
fibers forming square arrays; circular fibers forming rectangular
arrays in the matrix; and randomly arranged composite cylinders.
The idealization bf the composite by one of these models is
essential for the description of both the eélastic as well as

the inelastic behavior of the effective material.

1.2 Analysis of Composite Models

Py

To determine both the elastic and inelastic behavior of

the effective material by an analysis of an idealized composite




model, one needs to introduce several ssumptions in order to
obtain a reasonably simple solution. For fibrous composites
these assumptions include the folloﬁing: (1) The composite is
macroscopically homogeneous and orthotropic, (2) The fibers are
homogeneous and linearly elastic, (3) The matrix is homogeneous,
linearly elastic, or elastic-perfectly plastic, (4) Fibers and
‘matrix are free of voids and cracké, (5) There is perfect bond-
'ing at the interface of the constituents and there is no trans-
itional region between them, (6) The composite is free of initial
stresses, (7) The composites can be idealized by simple models
such as hexagonal, rectangular, or composite cylinders, and the
material behavior could be determined completely by an analysis
of a representative volume element of the idealized composite
model. This assumption implicitly indicates that there are no
end effects. End effects should be considered for points in the
material near a structural boundary. However, in the absence of
the end effects the boundary conditions for a representative vol-
ume element are completely determined froﬁ fhe requirements of
periodicity of the idealized composite, and frpm the generalized
plane strain condition ih the transverse plane (plane perpendicu-
Jla; to the direction of the fibers).

A complete description of mechanical behavior (both
elastic and inelastic),.requirés the.solution of the represent-
ative volume element of the idealized corposite model under six
"Compoéite Stresses"; The Composite Stresses may be defined as

those stresses acting at a point in a struéture, if it were made
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of the effective material. By the definition of the effective

- material, composite stresses are the "average" stresses in a
representative volume element of a composite model. If we
consider a hexagonal coﬁposite model shown in Figure 1-1, the
representative vélume element may be defined by OABC. If we
consider a coordinate system Xy1 Xyr Xqy such that, the axes

xl and X, are in the transverse plane, and X4 is in the direc-
tion of the fibers, the six composite stresses may be represent-
ed as Tll’ T22,‘T33, le, Tl3’ and T23. The composite stresses
Tllf T22, and T33 are the normal stresses in the directions X
xz, and X respectively; Ti2 is the transverse shear stress in
xlxé-plane; Tij’and T,, are the longtitudinal shear'stresses in
xlxéf and x2x34planes; réspectively. In analogy with the compos-
'ite strains 811;'622"€33’ 512} €q37 and 523 are the strains at

a point in a structure made of the effective material. Again,
by the definition of the effective material, the composite strains
are appropriate volume integrals of the strains in the represent-
ative volume element of the idealized composite model. The local
stresses and strains in the representative volume element are

called the microstresses and microstrains, respectively.

1.3 Elastic Behavior
The elastic béhaviof‘of a fiber-reinforced composite as
an orthotropic and macroscopically homogeneous material, requires

~the definition of nine elastic constants (Green and Zerna [11])




relating the composite stresses Tij to the composite strains

Eij' These elastic constants may be selected as: three Young's
moduli El, EZ' Egin'directions Xyr Xyr X3i three shear moduli

. ! - - '
G12' G13, G23 in planes XyXq4 XyXgys XyXgj and three Poisson's

ratios v v v Other selection of the elastic constants

12" 13" "23°

may be the tensorial coefficients C;g in the stress-strain rela-

tion T,. = ctJ ¢ For an orthotropic material only nine coef-

ij rs rs°’

ficients of_C;g are independent [11].

The elastic constants of the composites have been studied
very extensively in the past decade. Most of thesé studies have
been aimed at thé prediction of some or all of the elastic con-
stan£s, on the basis of different composite idealizations. Sev-
eral solution methods were used. For instance, Shaffer [2] using
a‘hexagonal model, Abolin'sh [3] and Springer [4] by using a
square model.obtained the estimates of the elastic constants by
appro#imate methods; Hashin et al [5] using a cylinder model,

obtained the bounds for the elastic constants by variational prin-
ciples; Hill [6] and Whitney et al. [7] estimated the elastic.
constants by self-consistent cylindrical models; Bloom et al. [8]
using a hexagonal model, and Adams et al. [9, 10] using a rec-
‘tangular model, obtained the elasticvcbnstaﬁts“by'exact methods.

A review of theseband other methods of determination of the
elastic constants has been made by Chamis‘et al. [12]. Also,
Hashin [13] made a histoficai review of general heterogeneous
materials, which also includes some references to the fiber-

reinforced composites.




1.4 Plastic Behavior

The theories on prediction of inelastic properties of
composites are of recent origin. When fiber-reinforced compos-
ites are loaded to failure, McDaniels et al. [14] stated that
there exists in general, four stages of deformation:

Stage I - Elastic deformation of fiber; elastic

deformation of matrix

Stage II -~ Elastic deformation of fiber; plastic
deformation of matrix
Stage III - Plastic deformation of fiber; plastic

 deformation of matrix

Stage IV - Failure of the composite.
It can be noted that the deformation of the composiﬁe in Stage
I is completely elastic, and can be determined from the knowledge
of the elastic constants of the composite discussed in the pre-
‘vious section. The boundary between Stages I and II corresponds
to initial yielding in the composite. Studies on the initial
yield pf the composites have been made by Lin, et al. [15], and
‘Dvérak et ai. [16, 17}. The former stﬁdy cénsiaered the yielding
of a composite lamina under the combined influgnce of the two
normal stresses in the transverse and fiber directions, and the

latter generalized the procédure for all the stress combinations.




Dvorak et al. [17] also aescribed a proceddre for determining
the generalized initial yield surfaces of unidirectional fiber-
reinforced composites under both external loads and uniform
temperature changes.

The deformation of the composite in Stage II is char-
acterized by microplastic flow in the matrix material and the
generation of the residual stresses in the composite. In order
to predict realistically the macroscopic behavior of the compos-
ite, one should be able to determine the nature of the micro-
scopic residual stresses. The macroscopic behavior includes the
definition of a hardening rﬁle, which determines the loading con-
ditions, and of a flow rule whieh determines the stress-strain
response of the composite.

" The deformation of the composite in Stage III is similar
to that in Stage.II, except that, in this stage even the fiber
undergoes plastic deformation; However, as the fibers often are
made of high strength and/or brittle materials such as boron,
beryllium, tungsten, glass,vefc.,lthis stage of deformation may
not be significant in most COmposites. The failure (Stage IV)
follows the Staée III (if it ﬁes present) or the Stage II.

The present work is primarily concerned w1th the deforma-
tlen ef fiber-reinforced metal matrix comp051tes in Stage II in
the "axisymmetric" mode; The axisymmetric mode of deformation is
a special case ef general deformation pattern that can occur during
the plastic flow, and'is eaﬁeed by a hydrostatic transverse com—-

posite stress (T T22), and the axial composite stress (T33).

11
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The composite shear stresses v§nlsh (le = T13 = T23 = 0). 1In
this mode of deformation the composite is idealized as a compos-
ite cylinder under generalized plane strain, loaded by a radial

stress equal to the uniform transverse stresses (T11 = ) on

Tso

the outer radial boundary and by an axial stress (T.,,). Compar-

33
ison of initial yield surfaces for the composite cylinders obtain-
ed during the course of the present work, with those obtained
earlier by Dvorak et al. [16] for hexagonal models (Figure 1-1),
showed that the composite cylinder idealization is very satis-
factory for the axisymmetric mode of deformation.

On the basis of exploratory studies of plastic flow in
boron-aluminum and beryllium-aluminum composite cylinders by
the finite element method [20], the hardening and flow rules
were formulated for fiber—reinforced metal matrix composites
with elastic-perfectly plastic matrices, under axisymmetric
deformation (Tll = T22, T33) in Chapters II and III. The pro-
posed formﬁlation was verified by the finite.element method
under several loading conditiéns.

The residual stresses developed in a composite due to
plastic flow in'the'matrix do have an influence on the fatigue
and fracture behavior. Therefore, an approximate solution was
formulated for the microstresses during plaétié deformation in
axisymmetric mode in Chapter IV.

The generation of microstresses dPring the heat treat-

ment of the composites in which the coefficients of thermal

expansion of the constituents are different is of interest in
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fabrication of these materials. The thermomechanical analogy
developed earlier [17] for uniform temperature changes is ex-
tended to the guenching and aging problems in Chapter V. The
linear volume changes that may occur due to the metallurgical
transformations of the matrix material during aging are also
incorporated into the.thermomechanical analbgy. By using the
thermomechanical analogy and the plasticity theories described
in Chapters III and IV, microstresses generated during heat-
treatment are found for tungsten-aluminum and boron-aluminum
composites in Chapter V. Heat treatment sequences that may
possibly improve the initial yield, fatigue and fracture proper-
ties of boron-aluminum composites are also suggested in the same
chapter. »

The theoretical foundations of the present study have
been already reported elsewhere [18, 19] and are summarized here

for completeness.




CHAPTER IT
THE PLASTICITY THEORY OF COMPOSITES

2.1 Introduction

This chapter is concerned with the deformation of
unidirectional composites coﬁsisting of an elastic-perfectly
plastic matrix, and continuous elastic fibers. The existing
plasticity theories for such composites have evolved from the
early work which identified the}possible failu?e mechanisms
(e.g., Stowell and Liu [21], Kelly and Davies [22], and Cratchley
[23]) - Yielding in the matrix on planes parallel to the fibers,
.both in the longitudinal and transverse directions, and brittile
or ductile failure of the fibers. In pafticular, Drucker [2U47,
Hashin [25], Shu and Rosen [26], Mulhern, et al. [27], Prager [28],
and Butler and Sullivan [29], considered Shear deformation df the
matrix in the présence of rigid fibers; Mulhern, et al. [30],
later relaxed the rigidity assumpfion and'permitted elastic strains
in the fiber direction; while Lance and Robinson [31], and McLaugh-
1lin and Batterman [32] allowed for plastic yieldihg of the fibers,

and constructed 1limit surfaces of the composites.

(12)
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The early work also suggested that matrix can deform
piastically when tﬁe composite 1s loaded inAéhe direction of the
elastically strained fibers, and the existence of a hysteresis
loop in cyclic Iéading was demonstrated both experimentally and
by simple theqretical;considerations [21-22, 33]. The axial and
otggr axisymmg?fic_defofmation modes in unidirectional composites
H?4Were discussed by‘Hill,[3H]; Mulhern, et al. [35] ..constructed
an exact plasticity.soiﬁtion_for a cbmpoéite cylinder containing
an elastic fiber, under éyclic axlal loading; and Dvorak, et al.
[16, 17] showed that plastic yielding in the matrix can be caused
by any axisymmetric stress state, e.g., by a hydfostatic stress,
or by a small uniform thermai change}. However, a continuum
theory allowing for suéh deformation modes of fibrous composites
remained to be developed. ' .

The axisymmetric stress states, such as tension 1in the
fiber direction, and a uniform thermal change are very frequently
applied in practice. Although in fhe presence:of strong elastic
fibers the composite can not faill in an ékisymmetric'manner, the
deformation of the matrix 1s bound to affeét the shear strength
of the composite. For example, if a nonhardening matrilx beéomes
completely plastic under a composite tenéion stress in the fiber
direction, the composite shear strength méy decrease. The axi-
symmetric plastic strains can also generate microstresses 1in both
constituents which may influence the magnitudes éf composite

proportional limits.
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The purposebof the present work is td construct a plas-
ticity theory which accounts for these and other aspects of the

axisymmetric plastic deformation of unidirectional composites.

2.2 The Loading Sdrface

The unidirectional fibrous composite 1s regarded as a
transversely isotropic, mascroscopically homogeneous solid consist-
ing of an elastic-perfectly plastic matrix of the Mises type, and
elastic fibers. A perfect bond is assumed-to exist between the
constituents. On the microscale, thé fibers afe circular cylin-
ders arranged 1n such a way that their axes are parallel, however,
they can have different diametefs and they cans¢be randomly distri-
buted; except for the requirement that the fiber volume fraction
.Vf must be nearly uniform in the transverse plane.

In the formulation of the yileld functioh, we shall adopt
the assumption about the existence of the yield function and plas-
tic pofential. No‘restr{ctions will be made on the form of the
yield‘function except fdf those implied by the gransverse isotropy
of the material,-and by the compatibilitj'of both elastic and
inelastic deformations’ of the constituents.

Let x4 denote a Carteslan system of coordinates such that
the axes X1, X, are in transverse plane and x3 is parallel to the
fiber directioh. The stresses applied to the.compoSite in the Xy
coordinate system are denoted at Tij’ (1 =1, 2, 3). If the
‘composite is initially free of internai stresses, the yield func-

»

tion must be invariant under5rdtation about the x3 axis, and under
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the transformations x3' = - x3. The appropriate invariants of
fhe stress tensor Tij can be obtalned by analogy with the well-
known strain invariants (e.g., Green and Zerna [36]). In nota-

tion similar to that used by Mulhern, et al. [30],

_ 1. : _ _ 2 2
Ip =53 [Ty + Tppls I = Togy Ig = Ti3° + 1,57,
Sl o2 2
Iy =35 [Ty = Tppl® + 27Ty,
1 _ 2 _ g 2
Ig =3 [Ty 7 ToollTy3™ - Tp3™] + 2 Typ Tpz Ty
(2.1)

Then, the yield function for a stress-free composite can be

written as [30]:
f = f[Il, I, I3, Iys 15] , ‘ (2.2)

If the composite is regarded.as a homogeneous solid, the
yleld function f defines a hypersurface in the.stréss space which
bounds the region of completely reversible elastic deformation,
i.e., it represents an initial yield surfaée of the composite.
Recent studies of the properties of these surfaces by Dvorak,
et al. [16, 17], have revealed that the microscopic nonhomogeneity
of the compasite has a profound influence on the actual form of
the yield function f. In particular, it was fognd that the dis-
tinctioﬂ between the yield surfaces for composites made of differ-

ent constituents, or with different fiber volume fractions, 1s
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reflected primarily in the dependence of f on the 1nvarlants Il

and I It follows that the composite must be plastically

5¢
extensible in the fiber direction, and compressible. If eijp are
the composite plastic strains, one must assume that

P, P

de33 # 0, dep,

70 (2.3)

These assumptions recognize the fact that a part of the
permanent composite strains is caused by elastic,vbutrmﬂ;complete—
ly re&ersible strains of the fiber. ‘Inasmuch as the plastic
strain increments . ds3§) and dekéi were neglected in all ear-
l1ier continuum models of fibrous composites, the assumptions 2.3
represents a departure towards a more reélistic plasticity theory
for composite materials. The plastic dilatati@n.has been ana--
lyzed so far only for particular composites undervisotropic stress;
.Chu and Hashin [38]. |

Let us now determine the funcﬁional depéndence of £ on the
invariants I; and I,. Since all composite stress states which
depend on these‘invariants must be symmetric about the axis of
each fiber, it 1is possible to assume that the local microstress
states will be also approximately symmetric about the fiber axis,
both in the fiber, and in the immediate vicinity of the fiber-
matrix interface. Under.such circumstances, the composite micro-
structure can be modeled as a system of right circular cylinders.
which consist of fiberé surrounded by uniform layers of the matrix
materiai [37]. If the fiber volume fractibn Vflis nearly uniform

in the transverse plane, it is sﬁfficient to consider a single
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composite cylinder of external diameter a, containing a cylin-
drical fiber of radius R; Vf = (R/a)2.

The previous studies of 1nitial yileld surfaces of regular
hexagonal éomposite arrays [16, 17] have shown that yielding
starts most frequently in the matrix at the fiber-matrix interface.
During the coﬁrse of the present work, extensive calculations
have been made, with the use of the finite element method [20], to
explore the plastic deformation and unloading of composite cylin-~
ders subjected to axisymmetric composite stresses along different
loadihg paths in the’I I2—plane.(The.details of these calculations
are given in Chapter III. Thé results of these calculations have
suggested the following assuﬁption:

"If the composite c&linder is loaded along any path:in

the I,I,-plane, the plastic zone in the matrix is an

annular ring adjoining the fiber-matrix interface".

This assumption, 1f not alkays true, represents a fairly
accurate approximation. Specifically; if the piastic,zone starts
to form away from the interface, it épreads rapidly towards the
fiber and reaches the interface within a very short segment of the
loading path. This assumption suggests that both the onset and
the terminatlon of plastic flow ip the matrix are restriqted to
the interface. Therefore, the loading surface of the composite
refers only to the matrix points at the 1lnterface, which are with-

in a homogeneous stress field for any instantaneous combination

of the composite stress invarlants I, and I,.




18

The properties of the composite loading surfaces will
now be explored;‘ Let us introduce cylindrical coordinates r, ¢,
x3 ,vsuch that r and ¢ are in the trénsverse plane of the cylin-
der, the origin is at the axls of the fiber,_énd X3 coincides
with the fiber direction. The cylinder is in the state of gener-
alized plane strain under any combination of the composite stress-
es Il and I2. The local microstresses oij in the elastic range
can be determined as in [16, 17]. Using an analogous notation
microstresses in the elastic range for the present case can be

represented as:

{orr %0 033} = [A] {Il 12}
(2.4)

{ }=0 : .

¢ %93 I3p

where { } represents a column matrix (the elements may be listed

horizontally or vertically) and

| ) _
[Al = |A); Ay
Ary  Bop
REES

(2.5)

The coefficients Aij are evaluated 1in the matrix at the interface
r = R, and depend on the four elastic constants of the constitu-~
ents, and on the fiber volume fraction. Theée can be derived from

the closed form solution for the microstresses in the composite
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cylinder which is given in Chapter IV,

The equation of initial yield surface of a stress-free
composite cylinder follows from the Mises yield condition and
Equation (2-4): | A
T

{1, 1,1}

LI, (21T [e] [a] (1, ;2}.- v2 =g (2.6)

where superscript T represents transpose,-Y the matrix yileld

stress in simple tension, and

[ ]
2 -1 -1
[c] = % 2 -1 (2.7)
syM, 2
L | R

It follows that the axisymmetric section of the 1nitial yield
“surface represented by the quadratic form in Equation (2.6), is
an ellipse in 1112—p1ane, withthe center at the‘origin, Il = I2
= 0.

The deviatoric components of the microstresses in Equa-
tion 2.4 are:

| 2 ‘
{S} = {Sr S 3} =3 [c] [A] {I1 12}

r 5S¢ 53
(2.8)

{Sr¢ S¢3 S3r} = 0,

So that Equation 2.6 can be written as”
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% {s3T {s} - ¥% = 0 (2.9)

Since Skk = 0, the first of Equation 2.8 can also‘be written as

{ b= [P] {1, I,) (2.10)

Se¢ 533
or in two other analogous forms for the remaining palrs of the

principal deviatoric stresses. When Equation 2.10 is selected,

[P] = % | - [A] - (2.11)

-

Assume that the composite cylinder has been loaded to a

-7 L
1= Il and

, the deviatoric microstresses at the interface are {SL},_F

certain axisymmetric plastic state, L, such that I

_ L
I2 = I2

and satisfy Equation 2.9. If the composite is now unloaded to a

= U _ T L _+ L
1 2-—12 from Il--Il R 2-12

tic unloaded were to take place, the'change in the microstresses

point T ==Il[{ I I , and if complete elas-

at the interface will be elastic. The deviatoric components of
this microstress change can be obtained from Equation 2.10, by re-

lacing {1112} by {(IlL-IlU) (IQL-—I2U)}. The deviatoric stresses
v at the unloading point {IlU 1.9} can then be written

s Yanas )

o 33

as U _u

L
850 S33

} o= {S¢>¢

L L U L U
,833 P-[P1 {(Z7-I7) (I, -I,7)1(2.12)
Equation 2.12 suggests that we can find an.unloading point
LU U : U _ U
I1 =0, 12 = a, such that S¢¢ 833

the values of oy and a., should satisfy the following relation.

= 0. In such a situation

2

L ;L _ rp-l L. ' |
{1,° T,7) = oy @y} = [P170 g5,,F 850 . (2.13)

It can be verified that [P] in Equation 2.10 is of rank 2,
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and 1is positive definite if and only if the vectors [P] {0 12}
and [P] {Il 0} are not coaxial. That is generally the case when
the elastlc constants of the constituents are independent. Speci-

fically, from Equations 2.5 and 2.11:

. ) |
z |P| = A, (A31 - A21) + Ay, (gu_— A3l) + A32 (A21‘ All) £ 0

(2.14)

In actual metal matrix composites consisting of a stiffer fiber ..
and a low modulus matrix, one finds that A12 and.A22 are one order
of magnitude smaller than (Aél T All), and the other coefficients
of [A] matrix are given in Equation 2.5;(exp1icitﬁvalue576f the-
coetfieients bf [A] matrix are given in Appendix I for some metal
matrix composites). Therefore; the last term in Equation 2,1& is
dominant; [P] is a nonsingular matrix; and Equation 2,13 has a
'unique solution for oq and as. A notable exception is found in
case of a homogeneogs cylinder . where All = A21 = A32-= 1,‘A31 =

12 22
of Equation 2.13 do not exist.

A, =A,, =0, so that |P| = 0, Equation 2.14, and the solution

It follows from Equation 2.13

L, L,._ L
{s 833 } = [P]{{Il I

2

50 b - oy o)) (2.15)

So that the equation of the section of the loading surface in the

I,I,-plane is, from Equations 2.6 to 2.9, 2.13, 2.15:
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£ 2 {I,-a, Iz-az}T (A17TeI[A] {I;-a; TI,-a,} - Y2 =0
(2.16)

A comparison of Equations 2.6 and 2,16 leads to the
conlusion that:

"At each point of the leading path in I1I2Acomp031te
stress plane, the loading surface of the composite cylinder is
identical with a translated initial yleld surface, such that the
center of the loadlng surface is at I1 = 0y, I2 = a2."

This indicates the existence of kinematic hafdening of
the composite cylinder under axiéymmetric'loading. Acéordingly

the required form of the loading function of an elastic.plastic

fibrous composite with a nonhardening matrix is

f = f[Il-"al ) I2-a2 13, IU’ Is] | (2.17)

2.3 The Plasticity Equations

Let Uus now write the equations governing the plastic flow
in the fiber-reinforced composites with a nonhardening matrix.
‘The treatment will be formal in fhe sense that it is:tentatively
assumed that a yield function exists, and the normality condition
holds. It will also be assumed that the loading surface is always

identical to a translated yield surfacé at any stage of ldading.
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Yield Condition:

The inlitial yield condition is

f =_f(Il, I2, I3, IM’ IS) =0 - , (2.18)
The subsequent'yield condition is

The explicit forms of Equations 2.18 and 2.19 for
13 = Iq = I5 = 0 are respectively given by Equations 2.6 and 2.16.
The general form of these equatilons can be derived from analysis
for the generalized yield surfaces [17].

Plastic flow occurs in the composite 1f

v

ar = 3L g1 + 3 g1+ 38 g7+ 3L 47 4 3 415 0
31, 1 Tar, 2 Yoary 43 T ATy My

The translation of the yleld surface due to plastic flow
1s reflected as a change in the parameters a;, @, as dal, da2.
The determination of these parameters requires the specification

of a hardening fule which will be discussed in Chapter IIT.

Plastic Strain-rate:

P

It 1s assumed that the plastic .strain increments dsij

obey the hormality condition, so that
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P _ of
deiJ = dA Lo

13
and : (2.21)

for £ 0 and d4f > 0,

deijp = 0 for £ < 0 and df < 0
where dA in a scalar constant.

The value of the scalar constant can be estimated from
the knowledge of plastic strain rate when .loaded in radial direc-
tions. However, formulae will bé derived to determine the vélue
of dXx in conjunction with the hardening rules in axisymmetiric

deformation in Chapter III.




CHAPTER III.

THE AXISYMMETRIC PLASTICITY THEOﬁY

3.1 Introduction

In Chapter II we outlined a general plasticity theory for
the fiber reinforced composites. We noted that there exists a
kinematic motion of the loading surface .in the axlisymmetric 1112
composite stress plane, during plastié flow. We observed further,
that 1f the microscopic yielding 1s localized gt the fiber-matrix
interface, during plastic flow, then the loadlng surface is
identical to the initial yleld surface in a translated position
in the I1I2—planeﬁ. The translation of the loading surface is
associatéd with the plastic straining of the matrix and the conse-~
quent generation of residual stresses. 1In Appehdix II it is
provéd that there exists an infinite combination of residual stress
fields and the associated initlal strain flelds, such that the
microstresses generated by’externél composite stfesses combined
with the existing residual stresses satisfy the yield condition at
both the micro- and macro-levels, and also the equilibrium
requlirements. By establishing the correspondence between micro-
stress increments generated by the applied cémpdsite stress

increments, we shall formulate she hardening énd the associlated

(25)
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flow rules governing the kinematic motion of the loading sur-
face, and the macrostrains, respectively, in the'IlI2-plaqe.

By doing so, we determine the particular combination of the
residual stress field and the associated strain field out of the

infinite possible combinations, such that they are consistent

with the microplastic flow.

3.2 Micro- and Macro-Stress Correspondence

In Chapter II we observed that the microstresses satisfy
the yleld condition given by Equation 2:9; and the macfostresses
satisfy the yield condition given by ﬁquation 2.16. It should
be nofed, that these two yield conditions are 1dentical, except
they are written for different stress systems. Whereas Equation
2.9 refers to the local deviatoric stresses at the fiber-matrix
interface, Equation 2.16 is an analogous form in which the local
stresses are expressed in terms‘of_the composite stress state.
Figure 3—1; shows schematically.the‘Equation.Z.S and 2.16. The
center of the Mises Circle (Equation 2.9) iﬁ‘the deviatoric stress
plane alwayé corresponds to the center of the ellipse (Equation
2.16), in the compbsité stress plane, since according to Equatlon
a

2.12, 2.13, and 2.15, the composite stresses a can cause

1’ 2
only isotropic stress changes at the interface. Similarly, any
loading state L can be represented by a vector giveh by Equation
2.12 from the center of each loading sdrface;(the subsequent yield

surfaces, Equations 2.9 and 2.16, are referred to as the loading
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;_ surfaces). When loading continues from L to L', the loading path
in the deviatoric plane must follow the Mlses Circle, because of
the nonhardening matrix. |

The above considerations suggest that'any composite stress
increment can cause the following stress changes in the matrilx at
the fiber-matrix interface during plastic flow:

(a) A hydrostatic stress increment which always contri-
butes to the translation of the loading surface 1n the composite
stress plane. |

(b) A neutral stress increment which causes only elastic
strains and has no effect on the motion of the composite loading
surface.

(¢) A deviatoric stress increment which causes plastic
strains in the matrix, and thus affects the moftion of the comﬁos—
ite loading surface.

Each of these stress changes éan be associated with a
component of the composite stress increment as follows:

Stress Increment (a) - the hydrostatiCIStress change (a)
is caused by

{ar

} (3.1)

2

1 dIZ} =.{dal do

where {da dag} is the translation of the loading surface in

1
composite stress plane. The éorresponding microstress change at

the interface is of the form
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m m m, _ '
{dorr do¢¢ dc33 } =dp {1 1 1}
(3.2)
m m m, _

Indeed, the composite stress change of Equation 3.1 does not
violate the Equation 2.16, and the microstress change of Equation
3.2 does not change the Equation 2.9.

Stress Increment (b) - thevneutral.streSS'change (b) 1is
caused by a neutral loading (L L'' in Figure 3—1) in the IlI2—

plane, given by
{aL a1} = du'<:— . %§—t> . (3.3)
2 1 . _

where dp' 1is a scalar multiplier.
Proof: Let us prove that the composite stress increment glven
by Equation 3.3 causes neutral stress change locally.

From Equations 2.16 and 2.8

3£/91, | ' I, - a
af/all = 2 [a17 [e] [AD 11 AN =3 1" (s}
- Q

The deviatoric stress increments at the interface caused by

{dI1 dI2}_in Equation 3.3 are given by Equatidn 2.8 as:




29

' -3f/3I
2 2 (3.5)

{ds} = = du' [c] [A]

w

Bf/BI1

A substitution for the derivatives from Equation 3.4 1leads to

{as} = 2p' [ec] [4] {S} ' (3.6)
where
B ' ] .
[a] = 0, d4; -4, , (3.7)
--dl 0 §3
d2 --d3 0

and from Equations 2.5 and 3.6

dp = Byoho - BAyphps
dy = ApqAgy - Ajphgy (3.8)
dy = Ayohsy - Byihgs
From Equations 3.6 to 3.8
s¥¥asr =0 . (3.9)

which proves, 1n connection with Equation 2.9, that the neutral'
loading given by Equation 3.3 causes only neutral loading 1in the

deviatoric stress plane. Conversely, a neutral loading in the
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deviatoric stress plane 1s a consequence of the neutral loading
in the'composite stress plane. As a corollary, it follows that
plastic deformation is caused by a composite stress other thaﬁ
given by Equation 3.3. . .

Stress Increment (¢} -~ the stress increment (c¢) is a
neutral stress change along with plastic deformation in the
matrix, and thus affects the translation of the loading surface in
the composite stress plane. The composite stress increment corre-

sponding to this stress change is similar to (b) and is given by

. _ of af

where du'' is a scalar constant. The micro-stresses corresponding
to thils stress increment are'neutral in nature, and purely devié—
toric. This 1s in contrast to the stress increment (b) caused by
composite stresses in Equation 3.3, wﬁere’the microstresses could
have a hydrostatic component. The deviator component of micro-
stress change (c¢) at the interface can be expressed in analogy

with Equation 3.6 as

{as} = {do} = 2 p'' [c] [d] (S} (3.11)
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3.3 The Hardening Rules
The superposition of the composite stress 1lncrements given
by Equations 3.1, 3.3, and 3.10,'corrésponding to the three types

of stress changes at the interface leads to the following equation.

—8f/812

dIl dal
= + du (3.12)
dI2 da2 Bf/Bll
where dy = dy' + du''. The elementary translation of the loading

surface durihg this composite stress increment is due to the
microstress increments (a) and (c). The devia%oric rotation (c)
causes the loading surface to travelAalong the instantaneous
tangent to the loading surface. This stress increment can be
considered as a consequence of two composite stress 1hcrements
both in the direction of the instantaneous tangent, the first one
causing an elastic stress change rotating the stress vector in
the deviatoric plane, and the second one which is equal and oppo-
site to the first_one but causing an 1isotropic stresé change.

The first of the above does not change the position of the loading
surface, and the second causes the loading surface to move along
the tangent. The net effects of thils process are,_that a devia-
toric neutral microstress increment is "locked" in the composite
<at the fiber matrix interface as residual stress, and the loading‘

surface has moved along the tangent wlth the loading point fixed
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in the Illg-plane. -Such translation of the loading surfade is
reflected in the Equation 3.12 by suitable selection of the multi—'
plier du. This will be done 1n the formulation of the two harden-

lng rules that will follow.

3.3.1 Hardening Rule I

_ In order to determine the value of du in Eduatioh 3.12,
it will be assumed that the vector {dal dd2} is directed always
in the "radial direction", where a "radial direction" is defined
as the direction in the Illz—plane passing through the center of
the 1nstantaneous loading surface and the current loading point.
This suggests that the tangentiél compoheﬁt of the combosite
stress increment 1is always elastic, and the microstress change
(e) ié absent along radial péths. ' .

The nature of the stress change (¢) has been investigated
“in the course of the fiﬂite elemenﬁ'ahalysis of elasto-plastic
composite cylinders by the ELAS65 program [20]; Figure 3-2 shows
the results for a boron-aluminum-composite cylinder which has
been loaded along several radial paths defined by 12 = BIl, well
into plastic range. The matrix becomes completely plastic 1n
each case. 'The details of the loading will be described later
in this chapter. bThe éhaded fans in Figure 3-2 represent the
range of directions of the resultént devliator stress vectors at
the fiber-matrix interface during plastic straining of the compo-
site cylinders. It 1s observed that radial loading in the compo-

site_stress space causes essentially iéotropic stress increments

at the interface during plastic flow of the matrix. Therefore,
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the effect of stress state (c¢) 1s quite limited along radial
paths. Similar results are obtained for other composites, such
as beryllium-aluminum, and also for different fiber volume .
fractions, but are not presented here.

On the basis of the above observations, a simple hardening
rule, which will be referred to as Hardening Rule I henceforth,
can be stated as follows:

"A load increment along an arbitrary path in axisymmetric
composite plane I1I2 can be resoived into radial and tangential
components. The radial component which is responsible for the
translation of the composite loading surface, causes an 1sotropic
stress increment (a), and a blastic strain increment at the inter-
face; the tangential component which éoes not affect the position
of the loading surface leads to neutral loading (b) and elastic
interface strains."

Thus the Hardening Rule I can.be‘obtained from the Equation
3.12 with du'' as zero and du' determined from the assumption of
radial translation made above. The Hardening Rule I can thus be

written as

T 1 -3£/01,
' = R duI (3-13)
2 3r/31,

where duI = dy', and {dal da2} 1s the elementary translation of
the loading surface. |
The scalar constant duI can be found from the require-

ment that the vector {da1 da2} is in the radial direction (See
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Figure 3-1.). Specifically the vectors

{(Il - ay + dIl) (12 - o, + dI2)} and

2

{(Il - oy - duI 8f/812) (12 - o, + duI Bf/all)}

‘must be coaxial, i.e., thelr cross-product must be equal to zero.
Neglecting the second order terms in fhe cross-product and simpli-
fying we obtain

(I, - @) dI, - (I, - aé)‘ a1, . _
I = (Il - al) af/all + (I2 - 32) af/aI2 (3.1”)

du

Therefore, the translation {da1 da2} of the logding surface can

be found for each given load increment from Equations 3.13 and

3.14. ©Note that du; = 0 for any radial path (I1 - ai)/(I2 - a,)

2
= dIl/dI2.
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3.3.2 Hardening Rule II

We formulated earlier the Hardening Rule I, which

neglected the deviatoric increment (c), and the translation of
the loading surface being assumed always taking place in the radial
" direction. The.considerations led us to a simple minded hardening
rule, which may be very useful in the formulation of a not-too-
complicated plasticity theory of composites under general loading
conditlions. 1In the present section we shall abolish the radiality
assumption of the translation of the loading surface,::and consider
the deviatoric stress increment (c) tqibe present, to formulate a
more accurate hardening rule.

| The Hardening Rule II will be formally stated in analogy

L

to Hardening Rule I as follows:

»

‘*A load increment along any arbitrary path in axisymmetric
composite plane 1112 can be resolved into translgtion and tangen-
tial components. The translation component which is responsible
for the translation of theAcomposite loading surface,‘causes an
isotropic»étress increment of type (a), and a plastic strain .
increment at the interface; the tangential component which does
not affect the position of the loading surface leads to neutral
loading of type (b)'andlelastic interface strains."

It should be noted that the translation component is a
consequence of the two microstress increments (a) and (c¢), and
the tangential component 1s a consequence of (b) and.(c). Thus

the Hardening Rule can be written as
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- 3 - N\ r | N
da daI -af/312
< > = { L - d“11< > (3.15)

da2 dIQ af/all
\ J \ J \ y,

where d“II 1is é'scalar constant and {da1 dag}' is the elementary
translation of the loading surface. Equation 3.15 is formally
similar to Equation 3.13 which defines Hardening Rule I. However,
the vector {dal daz},calculated from Egquation 3.15 may né longer
in the.radial directiqn, and duI # duII. Instead, we must re-
quire that each elementary composite increment {dI1 dI2} =

{da

da,}y where {da 'daz} is defined by Equation 3.15, causes

1 1
oﬁiy'isotropic stress changeé at the interface. This requirement
follows from EQuation 2.16, which suggests that, the center of the
current loadilng surface 1is at I1 = al',“I2 = a5 the composite
stresses oy and o, causes only isotfopic changes at the interface,
for any loading path in the IlI2—plane;

In order to determine the scalar-multiplier d“II it wili
be assumed that under the action of the composite stress increment
{docl daz}, not only the interface, but also the entire matrix will
experience an isotropic change only. On thé basis of this assump-
tion and stress equilibrium requiréments between the-locél and
composite stresses we can write the local stress increments in the
matrix and the fiber as follows:

In the matrilx,

™ do,."} = da

33 {1 1 1} (3.16)

r 1

¢¢

m
{do r do




In the fiber,

£ f f f
{dorr do¢¢ d033 }

= {dal do. do } (3.17)

1 7733

and do £ is determined from the equilibrium requirement 1in the

33
axial direction

£ v+ ag. .M

dogs” Vp 33

(1 - Vp) = da, . (3.18)

From Equations 3.16 and 3.18,

f

do33

= [- (1 - Vg) day + do,1/V, ' (3.19)

The existence of perfect bond between the constituents
requires that the local displacement increments in the radial

direction be equal, so that,

du

durm' at r = R (3.20)

In view of the radlal symmetry, dur = rde¢¢, and the local

strains at the iInterface are:

f m
o0 - 440

de at r = R

(3.21)

£
de33 = de

m
at 0 <r <a

33 -

The second relation is a consequence of the genefalized

plane strain in the axial direction of the composite cylinder.
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Since the filber remains elastic, one can find from Equa-

tions 3.17 and 3.19:

\Y

£ 1 1 e
de¢¢ = Ef ([(1 - vf) - vf(l - Vf)] dal - Vf da2)
d€33f =-§% ([-2 Ve + (1 - #%)]'dal + %% dag) |

(3.22)

The matrix strains will have an elastic part by the microstresses
given by Equation 3.16, and a plastic part, due to the local devia-
toric stresses Sij at the loading point {Il I2}. For a nonharden-

'ing matrix of Mises type:

m _ 71 m .
da¢¢ 3K +d4d A S¢¢
. (3.23)
m _ % m
G330 T 3, * AN Sy

where Km is the bulk modulus of the matrix, and aA™ is a scalar

multiplier. From Equations 3.21 to 3.23

gaM ea=1 ' "
{dal daz} = dx [F] {S¢¢‘S33} . (3.24)

wWhere
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1 1 1
F === ((1 - v.) - v, (1 - )) - =,
11 " E £ £ 7, 3K_
1 1 1
Fop = o= (=2 vy +# 1 - &) o L
21~ E; £ v, T 3K
Vv
F1o = - % fV > Fop =3 1V ’
£ Ve r Ve

and Ef, Ve are the elastic constants of the fiber.

The deviatoric stresses in the matrix at the loading point
{I1 I2} can be found from the Equation 2.15,

{S¢¢ 833} = [P] {(Il f‘al) (I, - az)} (3.25)
when [P] is defined by Eqution 2.11, and s o, are the coordin-
ates of the center of the current loading surface (Equation 2.16)
in the Illz—plane. The unknown parameters duII and dlm,can now be

found from Equations-2.16, 3.15, 3.24, and 3.25,
m _ -1 '
where E_ the Young's Modulus of the matrix, has been introduced for

dimensional reasons.

The coeffilclents of the matrix [R] are:




4o

) f \
Ri1 I; -
b = [F17! [P} J >

n
Ro1 I, - ey
\\ / . J
(3.27)

rY) 8 A

R, -3£/31,
)L >

R, 2£/91, .

Selected numeriéal values for the‘determination of these
coefficients are listed in Aépendix III.

The components dal, da2 of the e}ementany'translation of
the loading surface can now be determingd by using the Hardening
Rule II given by Equation 3.15, where the scalar multiplier duII

is found from Equation 3.26.

3.4 The Strains

The micromechanical considerations employed in the previous
sections are useful insofar as they permit a fairly accurate exam-
ination of the essential effects of the micrononhomogeneity of the
composite on 1ts macroscopic deformétion behavior. On the other
hand, the formulation of macroscopic constitutive relations for
the composite must be made on the basis of macrohomogeneous, aniso-

tropic continuum model of an elastié—plasticvsolid. As before, the
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emphasls will be on the axlsymmetric stress states, and the result-
ing deformation modes. The composite will be regarded as a homo-
geneous solid, loaded in the Illz—plane, with the 1oading_surface
given by Equation 2.16, which may be controlled by either Hardening
Rule I (Equations 3.13 and 3.14), or the Hardening Rule II (Equa-
tions 3.15 and.3;26). The load surface (Equation 2.16) is an
ellipse.inlI Iz—plane with its center at Il = Q5 I2 = 8, The
plastic component of a strain increment, 1f it exists, must coin-
clde with the outward normal to the loading surface [39, 40].

Let €op and 533 = €5 denote .the total composite strains in

the radial, and axial directions, respectively. The area strain in
thé transverse plane which 1s the ratio between the change in trans-
verse area to the original area 1is € = 2'err.

vThe élastic components of the total strains €4 and €,
can be found from the knowledge of the composite compliances (See

Appendix I) as.

{ ? = { P | (3.é8)

where ele‘and €2e are elastic components of the total strains €y
and €55 respectively, and Kij are the composite compliances.

‘Thefplastic components of the total strains € and €5 can‘
be ob@ained by integrating the plastic strain increments, which

can be written by using the normality condition [39] as
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ge.P = qx &
1 I
1

(3.29)
ge P = ax 3L
2 i,

where dA 1s a scalar multiplier, and f is the loading function
given by Equation 2.16. |

The scalar multiplier dA may be found from a suitable
estimate of the plastic strain increments under loading in the
radial direction, such as was, for instance, by Hill [34]. Instead
we shall derive another formula for d\ which will be consistent
with the formulation of the hardening rules.

Iﬁ the formulation of the hardéning rules in the eariier
sectioﬁs, we observed that there exlsts a compenent {dal da2}

of the applied composite stress increment {dI dI2}, which 1s

1
responsible for the translation of the 1oading surface in IlI2-

plane, during plastic deformation. This componeht was .in the
radial direction for Hardening Rule I, énd was in a special dir-
ectlon depending upon the current microstresses at the fiber-
matrix iﬁterface for Hardening Rule II. Closer observation of
these rules ﬁould reveal that, the only component of the composite
étress increment {dIl dI2} that causes plastic deformation is

{da da2}, when {dal da2} is determined from Equation 3.13 for

1
Hardening Rule I and from Equation 3.15 for Hardening Rule II.
The other component which is tangential to the loading surface
at the loading point, causes only'elastic strains. 1In both

hardening rules it has been postulated that {dal da2} causes only
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isotropic stress change in the matrix at the fiber matrix interface.
It was assumed further in the formulation of Hardening Rule II |
that, not only the interface, but also thée entire matrix experi-
ences only isotropic change during the-loading"{da1 da2}. Noting
that Equation 3.22 is equally valid with {dal da2} found from
Hardening Rule I (Equation 3.13), subject to the same assumptilons,
and considering the generalized plane strain in the fiber direc-

tion, the total composite strain increment-de2 In the axiél dir-

ection is equal to the strain increment de33f/ The value of de33f
can be found from Equation 3.22. Thus
de, = 2 ([=2 v + (1 = 2] day + & day) (3.30)

2 Ef f Vf 1 Vf 2 :

" The plastic component of the total strain de2 can be ob-

fained by subtracting its elastic component. Thus

D _ .
de2 = d€2 - (K21 dal + Koo daz) (3.31)

where Ko1 and Ky, are elastic. compliances as defined in Equation
3.28.
The scalar constant dA can now be found from Equations 3.29,

3.30, and 3.31 as

2\)f + (1 - Vf)/Vf

.
D= g1, [ E, - ko) day #
+ (g - Kyy) doy] - | (3.32)
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Thevplastic strain lncrements can now be obtained from
Equations 3.29 with dX determined from Equatién 3.32. The blastic
strains at any loading step can be obtained by integration of Equa-
tion 3.29 along the loading path where there is plastic flow (See
Equation 2.21). The total strains can then be obtained by adding

these to the elastic strains obtained from Equation 3.28.

3.5 Comparilison of Approximate

and Exact Solutions

The wvalidity of the hérdening'ahd flow rules proposed 1n
previous chaptérs wlll now be veqified by extensive comparisons of
the results obtained from these rules, with the.exact plasticity
solutions. Three loading programs are selected for the purpose.
The first in proportional loading and the other two are zlg-zag
paths consisting of linear segments in IlI2-p1ane. Two composites,
a boron-aluminum composite with a volume fraction of 0.3, and a
beryllium-aluminum composite with a volume ffaction of 0.5, have
been used in the analysis. The elastic constants of these com-

poSites and their'constituents are given in Appendix I.

3.5.1 Ezxact solution

The exact solution for each loading program are obtained by
using ELAS65 computer program [20], which 1s based on the finite
element method. The finite.element_meSh.fof'thé-composite cylinder

(Figure 5~3) under axisymmetric deformation consists of a layer of
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the cylinder with unit thickness in the axial direction, which has
a‘shape of a 10-degree sector of the transverse circular section.
The axisymmetric condition 1s specified by prescribing zero normal
displacements on the radial faces of the sector, and the general-
ized plane strain is specified by prescribing uniform displacements
in the thickness direction. A total of 19 hexahedral finite ele-
ments are used to cover the entire domain, 15 of them in the matrix.
The fiber is considered as an isotropic linear elastic material,

and the matrix as an isotropic elastic-plastic nonhardening material
_of Misés type. The composite stresses are simulated by prescribing
appropriate nodal forces. whenever required'the ELAS65 program 1is
restarted at the end of each linear segment of the loading programs

to change the loading direction in the T 12-p1ane by changing the

1
nodal forces sultably. The error in the,finiteceiement solution
[20] is expected to be less than 7%. . The loading surfaces are con-
structed at the end of each linear éegment of the zig-zag loading
programs. These surfaces are.construcfed by conéidering the micro-
stresses present at any loading point TIlvlz} in the IlI2-plane as
residual stresses; constructing the yileld surface‘corresponding to
these residual stresses; translating the origin of the coordinate
system of the above to {-Il, —12}.‘ The procedure of determining

the yield surfaces with residual stresses is outlined in Appendix

Iv.

3.5.2 . Approximate solutions

The approximate solutions for each loading program are

constructed by integrating the hardening and flow rules numerically
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by plecewise linearization. The center of the loading surface and
the total strains are found at each step of the loading. The load-
ing surface at the step is obtained by translating the stress free
initial yield surface such that its center coincides with the

center determined by the hardening rules.

3.5.3 Results and comparison

The three loadlng programs selected for the purpose of
checking the validiﬁy of the proposed plasticity theory with exact
finite element plasticity solutions are as follows:

i) proportional loading

This loading prograrnm conslists of loading a stress

free composite along a proportional path defined by I2 = BI, in

1
the IlIzéplane. The values of B selected are 0, 1, 1.34, 2, «
and -1. In order to facilitate comparison of the representation

of the results obtained along varidué'paths, a parameter t is
introduced, such that Il = plt and I2 = p2t wﬁere Py = Bpl and
t =Y at initial yield; Y is the tenéile yield stress of the
matrix, and is selected as 40,000 psi in all calculations.

11) =zig-zag loading I

This loading program consists of loading a stress free

composite along a zig—éag path. The path consists of 8 linear
continuous segments in Illz—plane (Figure 3-4) and contains a
total of 38 loading steps. The corners of the zig-zag segments
of the loading are at loading steps 2, 7, 6, 19, 22, and 31. 1In

the approximate solution each of the above steps 1s further

subdivided into 10 substeps to increase the accuracy.




47
ii1i) zig-zag loading II
Like zig-zag loading I, thls loading program also
consists of loading a stress free composite along a zig-zag path,
but another combination of the 8 linear segmeﬁts (Figure 3-6).
This loading program contains 46 loading steps. The corners of
the zig-zag linear segments are at loading steps 3, 9, 19, 24,
'32, 38, and 39. As before each step 1s further subdividéd into
10 subétéps in the approximate sqlution.
The results of loading along a proportional path I.2 =
BIl for a B-AL (Vf = 0.3) are shown in Figure 3-3. The micro-
stresses obtained from ELAS65 program were also used for Figure
3-2. The composite is loaded well into'plastic range.‘ Figure
3-3 shows the combosite strains for ail values of B excepﬁ 1.34,
and 2’in comparison with the theoretical predictions. It is ob-
served that the stress-strain curves gbtained from Hardening Rule
-I and the associated flow rule are almosﬁ identlcal with those
found by the finite element method. Equally gobd agreement was
found for the other two values of B. These comparisons provide
a direct verification of Equation 3.30 for the total axial compo-
site strain €55 and the flow-rule derived earlier. The stress-
strain curvés obtained from Hardening Rule II and the associated
flow rule are almost identical to those obtained from Hardening
Rule I, and so are not shown. |
The results obtained here will also be used in the deter-
mination of plastic dilatations, later in this chapter.
A stress free B-AfL (Vf = 0.3) éomposite 1s loaded along

the zlg-zag loading path I. The location of the loading surface
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and the total composite strains are obtalned by using both the
finlte element method and the proposed theorﬁ. The results are
shown in Figures 3-4 and 3-5. Figure 3-4 shows the loading path,
and the loading surfaces at Steps 1, 7, 15, 19, 22, 31 and 38,
calculated from the microstresses obtained from the finite element
method as well as the theoretical predictions from Hardening Rule
I. The initial yield surface at Step I is, of course, common to
both the finite element and theoretical methods. During the load-
ing process, the yleld surface 1s translated without deformation,
according to the Hardening Rule I. The agreement with the finite
element solution 1s examined by finding the centers of the yield
surfaces, both from Hardening Rule I, and from the finite element
solution. 1In the later case, 1t has been necessary to find the
centers of hypothetical loading surfaces based, on the microstress-
es in the interface element, rather than for the actual overall
~lcading surfaces, which include some times parts of loading sur-
faces of matrix points away from thé interface.and are not entire-
ly regular.

The differences between actual and.interface_loading
surfaces are found to be negligible. It is readily seen tﬁat
the calculated overall loading surfaces are almost exact replicas
of the initial yield surface, in égreement with Equation 2.16.
The centers of the loading surfaces obtained by using Hardening
Rule I (Equation 3.13) are very close to those oﬂtained from
the finite element method, but there 1s small discrepancy for
certain segments of the loading path. On the contrary, the |

‘centers of the loading surfaces obtained by using Hardening Rule
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II,(Equation‘3.15), have coincided (not shown on the figure)
exactly with thelr counterparts obtained‘by éhe finite element
method, whiph?éeem to indicate that the Hardening Rule II is
_ more acéurate.

“ Figure 3-5 shows a comparison of the total strains calcu-
‘lated from“the-hardéning and flow rules, and from the finite
element méthbd. The elastic strains, Equation (I-1) are also
plotted for each,point of the loading path. Again, the strains.
calculated from the rules are in good agreement with the.exact
‘results. . "

A stress free Be-Al (Vf = 0.5) is 1oaded along the zig-
zag loading path II. The location of the loading surface and
the total composite strains are‘obtained by using the finite ele-
ment method as well as the proposea theory. The results are shown
in Figures 3-6 and 3-7. . -

Figure 3-6 showsthe zig-zag loading path II, and centers
of the loading surfaces at Steps 1,.3, 9, 19, 24, 32, 38, and 46,
calculated both from the finite element method and the Hardening
Rules I and II. The initial.yield surfa¢e~for the Be-AfL (Vf'=
0.5) composite'is very large, and is shown in a separate Figure
4-1., Figure 3-6 contains only a part of the initial yield sur-
face, to illustrate the extent of loading along the described
path. The kinematic motion of the loading proceeqed again by
rigid body translation, with no deformation (negligible in the
finite element’solution), since the onset of yilelding at the
fiber-matrix interface has been predominant. It can be seen that

Hardening Rule II gives very accurate prediction of the exact
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method gased on the finite.elemeht method. On the contrary, the
centers of»the ldading surfaces predicted by Hardening Rule I
deviate signific;ntly from the exact results, at some segments
of the path.

: | The accuracy .of the flow rules associated with the harden-
ing rules is Vef;fied by a.comﬁarison bf the predicted total
| strainszith those obtained by the finite element method, and
the results é;e shown in Figure 3-7. It can be observed from this
figure the total strains obtained froﬁ the two hardening rules

on essentially same, and are very close to the finite element

solution.

3.6 Plastic Dilatation .

The magnitude of macroscopig plastic dilatation of the
B-AZ composite has been evaluated for the proportionai loading
12 = BIl’ for the values of B described earlier, and also for
additional values of the same.

The hydrostatic composite stress increment is

dT,, = 2 dIl +'dI2 = (2 + B) I, . (3.33)

The elastic isotropic strain increment is

de, . = de.® + de.C. : (3.34)

kk




51
Then, from Equations 3.33, 3.34 and (I-1)

dskke . :
a1 = [lkpy * kpy) + Bl + k001 (2 4 8)
(3.35)
P _ _ e
The elementary plastic dilatation dekk = d €k d €rk has

been found both by using the flow rule associated with Hérdening

Rule I aﬁd the finite element method. Figure 3-8 shows the ratios

e
kk

tan-ls (Note that ¢ 1s not the angular coordinate here). These

1% e € =
d €1k /d € , and d €1k /d Ty s gslfunctions of the angle ¢
ratios are approximately constant fdr a given value of B, since
the composite stress-strain:curves for the proportional loading
e

are nearly bilinear, Figure 3-3. Note that d €k 0 at ¢ =

0.597 m, and d T, = 0 at ¢ = 0.647 . '

kk
It is observed that the plastic dilatation is of the same

order of magnitude as the elastic dilatation for most values of ¢.

3.7 Discussion

The results of the previous sections indicate that the
Hardening and the associated Flow Rules proposed, provide a
respectable approximation of the exact hardening and flbw behav-
lor of the fibrous composites. The rules are simple enough,
that'they can be used with simple, computer programs to perform
the Integration or even without computer assistance for simple

loading paths, providing that the necessary material constants
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are known. Appendix I shows a summary of these constants for
B-A£ and Be-Al composites.

The Hardeﬁing Rule I is someﬁhat similar to the Ziegler's
modification of the Prager's kinematic hardening rule [43, 44].
The basic difference is, of course, that the present rule is not
an assumed oné; instead, it has been derived from the constraints
on plastic deformation imposed by the nonhomogenelty of the micro-
structure of filbrous composites with a nonhardening matrix. It
1s not beyond the realm of possibility that the kinematic harden-
ing in macrohomogeneous metals has .a.similar physical basis.

The Hardeniné Rule iI represents a higher order approx-
imation than the Hardening Rule I. As a consequence the results
obtairied by this rule are véry close (in some cases exact) to the
exact finite element solution. This rq;e gives a very accurate
description of microplastic flow at»fhe fiber matrix interface and
1ts effect on the macrobehavior.

| The flow rule proposed 1s baséd to some extent on the
"rule of mixtures" for the stresses in the axial direction.
However, it should be noted that the equilibrium of stresses by
rule of mixtures has been required only for that part of the
component {dal, da2} of the compo;ite stress increment {QIl, dI2},
which has been responsible for the plastic deformation. In spite
of this assumptlion, the total strains predicted by the proposed
theory agree with the exéct finite element solution. Conversely,
the agreement seems to prove the accuracy of the assumption made

in the evaluation of durg (Equation 3.26) and dA (Equation 3.32),
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that the entire matrix experiences isotropic stress change when

loaded along a path defined by {dal da2}.




CHAPTER IV.

DETERMINATION OF MICROSTRESSES

In the preceding chapter we developed a continuum theory
for elasto-plastic deformation in fibrous composites under axi-
symmeﬁric conditions. We observed.that the theory developed
provides a satisfaqtéry appfoximatiqn of the macro-elasto-plastic
response. In the present chépter we shall formulate approximate
evaluation of the internal ﬁicrostress fields in the composite
during the elasto-plastic deformation qf the matrix, under

axisymmetric conditions.

4,1 The Model

Consider again that the composite is represented by a

right circular cylinder, x, 1s both the fiber and cylinder axis.

3
The cross section of the cylinder is in the transverse r¢ plane,
conslsts of a fiber region 0 < r < R, and a matrix regipn R<r <
a. The cylinder is loadéd by composite stresses in Illz-plane.
Like in the formulation of the hardening rules in the earlier

chapters, 1t will be assumed that the plastic zone, if it exists,

(54)
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must adjoln the fiber matrix interface. Therefore, the matrix

can be divided into plastic region R < r < ¢, and an elastic

region ¢ < r < a, Figure 5-3.

4.2 The Loading

Consider that the cylinder has been loaded along a general
path to the plastic state {Il, I2}, and that another load incre-
ment {dIl, dIé} is applied. According to Hardening Rules I and II
(Chapter III) the composite-stress increment del, dIQ} has two
components {dal daz} and dp {—Bf/BI2 Bf/all}, where dy 1is a
scalar constant depending uﬁon the hardehing rule (duI or duII)
and f is the loading function (Equation 2.16).. We observed in.
Chapter III that the first componenttis responsible for the
-elasto-plastic deformation and cauﬁes isotropic stress changes
in the matrix at the fiber—matrii intérface, while the second
component causes pure elastic changeé. In this chapter we shall
consider the components {dal da2} and du {—af/812 af/BIl} of

{dI dI2} separately and formulate the microstress solutions.

1
At this point, 1t should be noted that, in the determina-
tion of duII (Equation 3.26) and dX (Equation 3.32) in Chapter
I1IT, we assumed that {da R daz} causes 1sotropic stress changes
not only at the fiber-matrix interface but also in the entire
matrix. Based on this assumption we can construct a simple

microstress solution (See Appendix V). However; in this solu-

tion only interface yilelds throuéhout the loading and the rest
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of the matrix remain elastic. 1In order to account for partial.or
full plasticity in the matrix, 1t will be assumed in the follow-
ing solution, that only the plstic region in the matrix adjoining

the interface experience the isotropic stress change.

4.3 Microstress Evaluation

Let {da1 daz}, determined from the Hardening Rule I or
11, be the component of the applied composite Stress increment

{dI1 dI2} causing the plastic deformation, and da, = B do

2 1°
where B 1s a constant. The stress and displacement fields caused

5 = B dal are:

In the fiber (0 < r < R),

by da, and do

1

f _ £ _
do, " = do,," = dp
(4.1)
do L E. d ¢ + 2 v, dp.
33 f 33 f
d u .3 (1 +v,.) (1 -2 v,) rdp - v, rde, (4.2)
r Ef f f £ 2 '

In the matrix,

dorrmp = dc¢¢mp = do33mp =dp for R<r <c (4.3)

and
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me _ ol _ 1 11 1 _ 1
d0pn 5 - %1 dy 5 = 3l a5 -
: r c r a a“~. ¢
me _ 1 ERE 1 1 1 1
d0¢¢ = {-£—2+ 2] d 1 + [ ) + 2] d }/[ ) - 2]
: r c - r a (o]
do..™ = E de. + 2 v [- & + QE]/[L - -1—] (4.4)
33 2 m 2 2 2 2 *
c a a c
me . 1 _ _
d u, = Em (1 + vm)(l .2 vm) r dal v T de2 +
(da1 -~ dp)(1 + vm) 2

S [(1-2v)r+2&
E; (8°/c° - 1) m r
: (4.5)

for ¢ < r < .a.

In these equations, d€2 = ds33 1s the axial composite
strain increment, dp is a constant which is not necessarily equal
to dal, and Ef, Ve Em’ v, are the elastic constants of the fiber

and matrix, respectively.

Equilibrium in x3 direction requires that

2 2 2

da, = Bda; = V, d033f + 9-;%—3— dag " + 3—25-9— do "
(4.6)
From Equétions‘ﬂ.l, 4.3, M.M,'and 4.6:
[-(1 - 2 vp)R?/a® + (1 - 2 v )c®/a®] ap + [35.32/a2 ¥
- | (4.7)

- 2, 2 _ :
+ E_ (1 - c“/a%)] de, = (B - 2 %“)dal
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The dilatation caused by the stress increment given by
Equation 4.3 in the plastic part of the matrix must be uniform-v
and elastic. If Vp = wx3° (02 - R2) is’tbe original volume of

an elementary layer of thickness x O, the dilatation 1s:

3
dav 2 2
_ de R dR R
—Vg - 2 ("c_ - ('é") "R—)/(l - (E) + dez (’4.8)
and
dav
__VJZ= %P. (4.9)
p m

where K is the bulk modulus of the matrix. During the elastic

dilatation: : .
de =du™] , dR=4dul ' (4.10)

These equations, in combination with Equations 4.2 and 4.5, lead
to another equation relating dp and d 62 to d al' The later

and Equation 4.7 can be written in matrix form

fdp/Em ' ‘T a a.. ]t e ’
{ = J f e (4.11)

de, ay1 8o s

where
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a7 - (L=2v) ®Ra)2+ (1-2v) (c/a)?
ayp = (Bp/Bp) (R/a)° + (1 - (c/a)?)
2,y = -2 (1 + v (1 (1 -2v) (c/a)®) - 3 (1 -2 V)

(1= (B/e)2) (1 - (e/)?) = 2 (1 + v) (1 -2 v,)

(B /Eg) (R/0)® (1 - (R/a)?) (4.11a)

a, = ((1=2v) - (1-2v,) (R/)D) (1 - (c/a)?)

B - 2w, c,=-4(1+ v) (1 - v, ). . (4.11b)

Finally, the stresses in the plastic part of the matrix

must satisfy the yield condition. If o m are the stresses 1in

iJ
the matrix before the application of the load incremeéent, the

yield condition at the end of the loading step is

(g (oijm) + 98 da

N = 0 (4.12)

-

3
1

Q

where g 1s the Mlses yleld, and r = ¢ 1s the position of the
elastic-plastic boundary. Equations 4.11 and 4.12 can be used,
together with Equation 4.4, to find unknowns dp, de2, and c.

The procedure which readily yields itself to a numerical solution
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conslsts in the selection of the position of ¢ of the elastic
plastic boundary, and in the determination of the corresponding
load increment da,. Write |

1

g(o, ™ = g(r) = glr-ar) + 3& ar (4.13)

0 for r = ¢, a substitution of Equation 4.13

Since g(r-dr)

into Equation 4.12 gives after rearrangement

do ' ,
Note that dc in Equation 4.14 is differént from that 1n Equations
4.8 and k.10. |

If the elasto-plastic boundafy is 1océtéd at r = ¢ -
dc > R before thié application dal, Equations 4.11 and 4.16 can
be used to find the increments dp, dez, and dal, corresponding
to dec. The substitution of these results in Equations 4.1 to
4.5 yields the local stresses and displacements corresponding
to the component dal and da, = Bda of the composite stress incre-

2

ments dI, and dIl

1 2°
In the formulation so far we assumed that the constant

B = da2/dal exists. In cases where da 0, B becomes infinity.

1 =
However, the formulation can still be used if we rewrite the
quantity cldal/Em in Equation 4.11 by using Equation 4.11b as

follows
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cido /E = (B - 2 vm)dal/Em = (da2 -2 vmdalj/Em (4.15)

_..The effect of component du{—af/312 0f/3I} of {ar, dI,}1,
where duy = duI or duII’ can be obtalned from the elastic solution

as
{dorr do¢¢ d033} = dp [A] {—af/aI2 af/aIl} N (4.16)

where [A] must be evaluated at the appropriate radius r [e.g.,
Equation 2.4]. The multipliers duI, or duII’ whiéh were found
for the fiber matrix interface in Chépter III are now assumed to
apply to the entire matrix R < r < a. Further refinements,
perhaps, could be obtained if one can define different values
for duI, or d“II in the elastic and plastic zones of the matrix.

The complete solution for the stress increments in the
composite can now be found by superbosition of'solutions given by
the Equations 4.1, ‘4.3, 4.4 and the Equation 4.16, provided [A]
is found at any value of the radius r. |

A computer program has been written integrate numerically
the hardening ruies:(I énd ITI) and the microstress solution, and
also the associated flow rules by pilece-wise linearization. This
program can evaluate the centers of the loading surface, the com-
posite strains, and the microstresses during plastic deformation
of the composite in the axisymmetric I.I

172
The program can also solve the thermal and aging problems which

composite stress plane.

'fall in the same axisymmetric deformation mode, the details of
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which will be discussed in Chapter V.

4.4 Numerical Results

The stress evaluation procedufe has been verified by
comparison of the results with the exact finite element solution
from the ELAS65 program. The composites B—AL (Vf = 0.3) and Be-AZ
(Vf = 0.5) have been used along with the three loading programs
discussed in Chapter III.

‘Table U-1 shows the comparison for the case of the B-Al
composite loaded along the zig-zag péth I in Chapter IITI (Figure
3-4). The microstresses have been determined from ELAS65, com-
puﬁer—aided numerical integration of Hardening: Rules I and II
coupled with the microstress evaluation procedure, and also by
using the approximate formula, Equation (V-1) with the Hardening
Rule T. » '

Tablg 4-2 sShows the comparison for the case of the Be-A%
composite loaded along the zig-zag path II in Chapter III (Figure
3-6). The microstresses have been determined from ELAS65, and
the numerical infegration of Hardening Rule II coupled with the
microstress evaluation procedure.

It can be observed from Table 4-1 and 4-2 that all three
approximate methods give a satisfactory estimation of the exact
finite elemenﬁ solutioﬁ, both at r = R, and r.= a. However, the
Hardening Rule II gives the best precision, with only few errors

'greater than 3 percent of the exact value. As one would expect,
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Table 4-1. Microstresses in the matrix of the B-AL composite

cylinder (V. = 0.3) at selected points of the
loading patg of Figure 3-4.  (Stresses in 10% psi).

a. At the fiber-matrix interface, r = R.

Loading - '
Step 2 7 15 19_ 22 31 35

Opp

ELAS65 -3.262 105.5  208.1 206.4° -19.15 -312.1 -91.04

H.R.I -2.001 107.5 206.5 206.6 -17.95 -=318.1 -99.18

H.R.II -2.810 107.5 207.3 - 205.2 -20.50 -=315.5 -97.80

Eqn. (V-1) -3.160 105.0 206.6 205.3 -15.56 -=309.5 -90.86
%00

ELAS65 5.674 90.88 188.3 191.1 26.82 -285.4 -117.1

H.R.I 3.789 86.41 192.9 196.6- 27.36 ~-291.4 -125.2

H.R.II 5.700 93.50 188.5 190,1 25.70 -287.1 -121.0

Egn (V-1) 6.023 90.55 187.2 189.7 29.90 -281.8 -117.6
033 .

ELAS65 4o. 45 136.1 162.0 161.5 0 -265.9 -137.5

"H.R.I 4o.61 132.5 162.0 161.6 -2.982 -269.9 -145.1

H.R.II 40.60 138.7 160.8 159.3 ~2.800 -267.5 -144.1

Eqn. (V=1) 40.58 136.0 160.6 159.8 - 1.090 -262.8 -136.6

b. At the cylinder surface, r =-a.

Loading

Step 2 7 15 19 22 31 35

Opr

ELAS65 0 100 - 200 200 0 -300 =100

H.R.I 0 100 200 200 0 -300 -100

H.R.II 0 100 200 200 0 -300 -100

Eqn.(V-1) 0 100 200 200 0 -300 -100
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Table 4-1. Continued

Y
ELAS65 2.988 95.64 194.0 195.7 18.56 -290.5 -=110.0
H.R.I 1.874 92.71 190.5 192.3 16.13 -277.4 -~ 96.2
H.R.IT 2.890 86.40 192.2 195.9 20.10 -281.9 -100.0
Eqn. (V-1) 2.943 95.38 193.7 195.0 14.65 -291.1 -108.6

933
ELAS65 41.39 137.9 158.0 . 158.6 - 1.513 -257.4 -144.4
H.R.I 40.88 135.9 148.7 148.1 -11.73 -247.1 -138.0
H.R.IT 41.32 131.6 156.7 158.1 - 1.719 =-251.1 -140.1
Eqn.(V-1) 40.58 136.0 160.6 159.8 .1.089 -262.8 =136.6
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Table 4-2. Microstresses in the matrix of the Be-Af composite
cylinder (Vf = 0.5) at selected polnts of the loading
path of Figure 3-6. (Stresses in 10? psi).

Loading
Step 3 9 19 24 32 38 4o.
Grr(r = R)‘

ELAS65 -85.80 -288.4 -155.0 -74.14 208.0 411.6 -7.18
H.R.II -85.80 ~286.3 -154.5 -74.10 206.5 409.0 -6.15
o¢¢(r = R)

ELAS65 -63.40 -262.9 -178.1 -98.65 181.3 376.5 18.03
H.R.II -62.80 -261.0 -178.0 -98.70 180.0 373.7 19.61

033(r = R) |
ELAS65 -39.70 -242.3 =-201.2 -120.4 161.9 368.1 39.14
H.R.II —39.50 -240,0 -200.6 ~120.0 160.5 365.0 40.00
O'rr'(I’ = a) .
ELAS65 -80 -280 ~160 ~80 200 4oo 0
"H.R.II -80 ~-280 ~160 . =80 . 200 . 4oo 0
‘ o¢¢(r = a)

ELAS65 -~67.30 ~267.0 -173.6 =~94.40 -185.3 379.7 13.10
H.R.II -67.60 =-266.1 =171.4 ~92.29 186.3 397.9 12.00
033(rl= a)

ELAS65 -37.20 =-236.4 -205.4 -125.3 155.8 356.2 by, 20
H.R.II -35.39 =-235.1 -204.4 -124.6 155,0 - 354.1 hn, 39
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the larger errors are usually at the low stress magnitudes.

4.5 The Completely Plastic State

When the composite is loaded beyond initial yield
surface, or a current loading surface, the plastic zone expands
gradually from the fiber matrix interface towards the external
surface of the cylinder (cases contrary to this do exist, but
will not be considered here). The stress evaluatlon methods
discussed earlier can be used to deterﬁine the_position of the
elasto-plastic boundary at any stage of loadihg in IlIZ—plane.

In order to 1llustrate the extent of the plastic zone in the
composites, surfaces corresponding to the compietely plastic
state have been constructed for the case of proportional loading.
Both ELAS65 finite element solution, and the approximate stress
determination method with the Hardening Rule II have.been used
in the analysis. The results are shown in conjunction with the
initial yield surfaces in Figures U4-1 and U4-2, for the Be-Al

(Vf = 0.5) and B-AZ (Vf = 0.3) composites, respectively. As one
would expect, the plastié zone spreads most rapldly when the
loading path is not difected in the hydrostatic stress direction
I1 = 12. The matrix becomes completely plastic immediately after
the onset of yielding i1f the loading path 1s in the second and'

fourth quadrants, 12/1 < 0, or in a direction adjacent to the

1
stress axes. The results of Figure 4-1 seem to suggest that the
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vertex of the complete plasticity surface 1s obtalned on a path
which intersects the initial yield surface at a point where |
af/312 = 0. However, further confirmation is required regarding
this phenomenon. |

Note that nelther the initial yield surface nor the
complete plasticity surface can be regarded as fallure surfaces
of a composite, since the axisymmetric fallure modes are limited
by the strength of the fiber. However, the axisymmetric deforma-
tion can effect the shear strength of a composite. Further stu-

dies are required in this direction.

4.6 Discussion

The plasticity solution deveioped in this chapter for a
composite cylinder 1s primarily baSed on two assumptlons. Filrst,
ylelding always starts in the matrix at the fiber—matpix inter-
face and proceeds outwards away from the center of the cylinder,
and the second, the devliator stress rotations in the deviatoric
stress plane during plastic flow are elastic and given by Equation
3.5 for the interface and similar equations for other points in
the matrix with different [A] matfix, the rotational constant dp'
belng same for all the points in the matrix, although it has been
determined only with respect to interface, in the hardening rules.
The first assumption is fairly accurate one, at least, along
radials paths for a stress free composite cylinder. The second

assumptlon leads fo the conclusion that the stress increments other
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than the elastic deviatoric rotations are purely hydrostatic and
uniform in the entire plastic region. The deviatoric rotations
were observed to be a consequence of only the constraint of the
elastic fiber in the derivationof the Hardening Rule II in Chap-
ter III, the elastic regions in the matrix were implicitly assumed
to offer no constraint to cause any deviatoric rotations. Al-
though, no direct verificétion of these assumptions could be made,
a hollow cylinder under internal pressure has been solved making
similar assumptions in Appendix VI by using Tresca's yield condi-
tion. ThisAproblem was originally solved by Hill [41, 45]. It
can be seen that the equations for the inplane stresses in both
solutions are identical, and the 033 stress is slightly different

in the plastic region.




CHAPTER V. _
THERMOPLASTIC DEFORMATIQN AND RESIDUAL
~ "MICROSTRESSES IN HEAT-TREATED .
COMPOSITES

5.1 Introduction

The manufacturing process of fiber-reinforced metal matrix
composites often involves heat treatment which provides desirable
mechanical properties of the matrix material and of the inter-
facial bond with the fiber. Similarly, a composite can be exposed
to temperature cycles in structural applications. As a result of
differential thermal expansion of the constifuents, only temper-
ature change leads to the development of microscopic strain and
stress filelds in the composite. It was found in earlier studiles
(16, 17], that only moderate temperature changes are needed to
cause yielding in most metal matrix composite systems. Accord-
ingly, thermoplastic strains and the attendant residual stresses
exist in many composites which have been subjected to large ther-
mal changés. a |

The residual stresses in superposition with the micro-

stresses caused by external loads, form.a part of the total

(69)
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internal stress field in the composite, Their determination is of
interest for two principal reasons., First, éﬁe residual micro-
stresses can affect the onset of yilelding in the matrix and,
therefore, influence the macroscopic mechanical properties of the
composite. Second, they can have an affect on the nucleation and
growth of imperfectilons in‘the composite microstructure both dur-
ing heat treatment and subsequent loading. Specifically, the
presence of residual microstresses in the matrix can significantly
reduce the fatigue strength of the composite by promoting fatigue
failure of the matrix. Related studies on this problem had been
done by Hoffman [52, 531 and Fedon et al. [54], who estimated the
residual stress states in copper-~tungsten composites due to tem-
perature changes by‘approximate‘techniques.

In thils chapter a thermavmechanical analogy will be
formulated, which will permit the plasticity theories developed
in the earlier chapters, be utilized in the solution of thermo-
plastic problems. The proposed hardening ruleg‘will be extended
for cases where the matrix yleld stress is a function of temper--
ature. | _

The theories developed will be used in the predictioﬁ of
the internal microstresses in fibrous metal matrix composites
caused by heat treatment during tﬁe fabriéation process., The
theory willl be verified by a comparison of the predicted and

the available experimental data,
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5.2 The Thermo~Mechanical Analogy

When composites are subjected to the differential volume
changes in the constituents, internal residual microstresses are
developed. The volume changes may be due to uniform temperature
change of the entire composite, and due to the linear dimensional
changes occurring during the aging of certain alloys, because of
the métallurgical trgnsformations,' In this section we will devel-
op a procedure which relateé the residual microstresses due to the
volume changes, to the microstresses developed 1n the composite
due to axisymmetric composi%e loadiﬁg.

Consider a composite the temperature of which has been.
changed from N to 8. Let (AL/L)m and (AL/L)f be the linear
~dimensional changes due to metallufgical transformations in the
matrix and the fiber, respectively. Then the total linear

dimensional changes during this time'are

Er = ap(0 = 8.) + (AL/L),

(5.1)

Eq = op(6 - 8.) + (AL/L)
where gf and Em are total linear dimensional changes, and Op and
o afe coefficients of the thermal expansion of the fiber and

matrix, respectively.
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Now consider the composite the constituents of which are
éubjected to the total linear dimensional changes gf and &m and
also a composite stress system I1 = I2 = S 1n the axisymmetric
I.I. composite plane. We notice that a microstress response

172
given by

S {1 1 1}

(5.2)

~~
Q
=]
Q
=]
Q
=8
e
L1}

s {1 1 1}

in the fiber and the matrix, respectively (the shear stresses

being zero), form an exact solution of the problem under consid-
eration, if we select S such that there is uniform total micro-

strain field in the entire composite. That is,
f f f m _ .’ m
= =g | (5.3)

where eij are the total strains and ﬁhe.superscripts f and m-
refers to fiber and matrix respectively. |

The total strains in the fiber and matrix due to the
linear dimensional changes Ef and Em in Equation 5.1, anq the

microstresses in Equation 5.2 are as follows:

f = f 3 ’ f = -—S—
e T %40 T %33 T br 3K
(5.4)
: m _ m_ e Mo 4 S
frr T o9 33 m ~ 3K
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where Kf and Km are bulk moduli of the fiber and the matrix,

respectively.

From Equations 5.3 and 5.4

' tr = &

Thus, if we subject the composite to the total linear dimensional
changes in Equation 5.1 and the composite.stresses Il = 12 = S;
where S is given by Equation 5.5; then we obtaln the microstresses
and microstrains given by Equation 5.2 and 5.3. We observe that,
no yielding occurs in the composite because of the isotropic
nature of the microstresses in Equation-5.2. It should be noted
that this i1s an exact solution as we éatisfied both thé equili-
brium and compatibility requirements. .

In order to obtain the solution for the microstresses in
a composite subjected only to the linéar dimensional changes Ef
and gm in Equation 5.1, we can solve the composite under the
action of Il = I2 = -S, when S is given by Equation 5.5, by the
plasticity theory developed in Chapters III and IV. and superim-
pose the microstresses obtained on the stress field in Equation
5.2. This procedure is illustrated in Figure 5~1. The composite
strains can be obtained from the flow rule for the composite
stress state I1 = I2 = -5 and adding them to the uniform strains
in Equation 5.4. Care should be taken to add twice the uniform

strain in Equation 5.4 to €4 the area strain in the transverse

plane.
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It can be noted that the analogy developed here is similar
to that developed in [17] and also to the forﬁulation for residual
stresses in Appendix II, except the second part of the solution is
elasto~plastic in the present case.
The analogy developed here can be easily incorporated in
the numerical integration procedure fof the microstresses formu-

lated in Chapter IV,

5.3 Solution Procedures

The results obtained in this chapter are obtained by any
one of the two methods. The first is the finite element method
[20], which has been realized by means of the ELAS65 computer
program for the solution of equilibrium thermoplasticity prob-
lems in solids and structures. Two-types of_models have been
used to represent a composite, in conJunction with the finite ele-
ment method. The first model consists of a composité in which the
fibers form hexagonal arrays as shown in Figure 1-1, A représent~
ative volume element in Figure 5-2 has been considered in the
analysis. The répresentative volume element is divided into 33
finite elements. Under uniform temperature changes in the com-
posite, the hexagonally symmetric deforﬁation is prescribed by
specifying zero normal displacements on faces OB and 0C (Figure
5-2), uniform normal displacement over the face BC, and general-
ized plane strain in the thickness direction. The second model

‘ecnsists of a composite cylinder as shbwn in Figure 5—3!
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The finite element description of this model is identical to
that used in the verification of the proposed plasticity theory
(See 3.5.1).

The second method, which has been used most extensively
in this chapter in the microstress solution developed in Chapter
IV, along with the hardening and flow rules developed in Chapter
ITII. In order to account for fhe variation of matrix yield stress
with temperature the hardening rules were to be modified as shown
in Appendix VII. The procedure for the application of this method
is iliustrated in Appendix VIII for a 7075-T6M AL-B composite, the
required details being shown in Figure 5.4. The governing equa-
tions have been integrated numerically by using a computer program.

Both the finite eleﬁent method and the method based on
the proposed plasticity fheory permit to evaluate the local
stresses at each point of the composite cylinder, also the com-
posite strains, and the loading suffaces, at each loading step.
In addition, the finite element method gives the local displace-

ments and strains also, which are not emphasized in this chapter.

5.0 Verification of Theoretical Predictions

In order to illustrate the accuracy of the method based
on the proposed plasticity theory, the problem of determination
of the microstresses developed during the heat treatment and the
stress-strain curve of a 2024-T6 AL-W composite has been consid-

ered. Calculations have been made to simulate the experimental
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work by Cheskis and Heckel [46]. These experiments appear to
be the sole source of experimental data on in-situ stress dis-
tribution in a metal matrix fibrous composite. _

The heat treatment process of 2024—T6>A£~W involves [U6],
quenching from the solutions using temperature of 920 deg. F. to
room temperature of 70 deg. F., followed by aging at 365 deg. F.,
and subsequent cooling to 70 deg. F., The matrix yield stress
before and after aging as shown in Figure 5-5 has been estimated
on the basis of the data obtained from References [47] and [48].
Note that the matrix yield stress in the as-quenched state (W) is
much lower than in the T6 state. During the heat treatment simu-
lation the matrix is considered as elastic—perfectlypléstic. By
using the computer-aided numérical inéegration of the proposed
plastibity theory and also the ELAS65 program with both the cylin-
drical and hexagonal models, the micrqstresses Opp? o¢¢, 033, and
.the equivalent stress o at each poilnt in the composite are found
during the heat treatment process. The elastic?plastic boundary c
defined in Figure 5-3 has also been monitored in the former pro-
cedure. Filgure 5-5 shows the values of the microstresses in the
matrix at the fiber-matrix interface, and the position of the
elastic—plaétic boundary c¢ as a function of temperature. It can
be observed that the matrix is completely plastic during most of
the quenching period, and only partially plastic during the period
of reheating to the aging temperature. In view of the speed of
the quenchi@g process, which lasts only for several seconds. one
can consider the deformation as iﬁvicid, and ﬁhe use of classical

plasticity theory as appropriate. Some creep effects could occur
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during the aging period which is rather long. However, the
matrix yield stress increases very rapidly dﬁring the iﬁitial
interval of the aging period. Therefore, the duration of plastic
straining will be short (or even be absent), and the time depend-
ent deformation components can be neglected, Further, the micro-
stresses generated due to the volume changes due to metallurg-
lcal transformations of 2024 AL alloy during aging [48] have been
found to be insignificant, and so, are not considered in the
present case.

Figure 5-6 distribution of the residual stresses at the
end of heat treatment as a function of ‘the radius. The invariant
quantities, ¢ the equivalent stress and the hydrostatic stress
component Okk = orr + o¢¢ + 033.are represented by the dotted
lines. The matrix average stresses which are the volumetric
averages of the microstresses are alsé presented on the same
figure.

The tensile test of Cheskis and Hecke1:[46] is now simu-
lated numerically taking into account the residual microstresses
obtained during the heat treatment process; In order to account
for the strain hardening in -2024-T6 AL, this part of the nuﬁer—
ical simulation is obtained by using the ELAS65 program [20].

The stress-strain curves for the.tungsten fiber and the aluminum
matrix are shown in Figure 5-7. Although the ELAS65 program does
not handle problems involving residual stresses it has been
modified in the present case to load the composite with residual
stresses to 125 ksi in the axial direction and to unload. Tﬁe

‘composite stress-strain curve, the fiber stress and the matrix
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average stress in.the axial direction are plotted in Figure 5-8.
Tﬁe experimental values of Cheskis and Heckel are also presented.
It 1s seen that the agreement between the experimental and pre-
dicted results is extremely good. In spite of the nonhardening
matrix assumption for the results at 633 = 0, the experimental
and the predicted values of the average stresses are very close.
This provides direct verificatlion of the proposed plasticity . the
ory by the experimental results.

In order to illustrate the motion of the loading surface
duriné a tensile tesﬁ, the composite . is loaded to 100 ksi and
unloaded. By using the Hardening Rule II, the center of loading
surface is obtained during the entire loading sequence. Figure
5-9 shows the loading surfaées and the motion of their centers.

Figure 5-10 shows the coefficients of thermal expansion
of the composite during the heat treétment process predicted by
-both the finite element method and-the Hardening Rule II. The
procedure for the determination of thé coefficients of thermal

expansion in the latter case is outlined in Appendix IX.

5.5 Thermal Stresses in

6061 AL-B Composites

A 6061 AL-B of volume fraction 0.3 has been considered.
The variation of the matrix yield stress with temperature before
and after aging has been estimated from the data in References

[M?] and [48]. The following heat treatments of this composite
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have been investigated by using the proposed plasticity theory:

(a) Quenching from 862 deg. F. to 70 deg. F., followed
by aging at 320 deg. F., and_cooling to 70 deg. F. The unit
dimensional changes [48] due to the metallurglcal transformations
during aging are small and are neglected. The matrix stresses
at the interféce and the positions of the plastic zone are shown
in Figure 5-11; the stress distribution at the end of the heat
treatment in Figure 5-12. It is seen that relatively large
stresses are present, especially at the fiber-matrix interface.
Specifically, both the equivalent and hydrostatic stresses have
maxima at the interface. The residual stress distribution would
seem to favor the initiation and growth of imperfections in the
interface region. .

(b) Quenching from 862 deg. F. to -320 deg. F., followed
by aging and cooling, as in (a). This is T6M temper which was
‘used by Hancock [49] to improve the properties of the fiber-matrix
interface bonds. Flgures 5-13 and 5—1& show the stress distribu-
tions. It is seen that the final stresses are comparable to those
obtained in the previous case.

(¢) The T6M treatment descriﬁed in (b), followed by sub-
sequent quenching to -320 deg. F. and reheating to 70 deg. F.

(d) The T6M treatment followed by quenching to -450 deg.
F. and reheating to 70 deg. F.

The last two heaﬁ treatments have been designed to cause
a change in the magnitude and the distribution of the room temper-
ature residual stresses after heat treatment. No metallurgical

effects are caused by the cooling cycles. Figure 5-15 shows the
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equivalent stress_E, at the interface, and the position of the
plastic zone during the thermal load sequence. Figures 5-16 and
5-17 show the final distribution of the residual stresses in the
composite. It i1s observed that considerable redistribution of
the residual stresses takes place, especially at the fiber-matrix
interface. The average matrix stresses are also reduced. The
stress redistribution is obviously very favorable since all
stresses in the matrix at the fiber-matrix interface are now com-
pressive, and the magnitude of these compressive stresses increas-
es with the decrease in the cooling temperature. The positions
of the plastic zone éhown in Figure 5-15 indicate the development
of the additional plastic strains in the matrix during the cooling
cycles. The final residual.stresses at the room temperature are
caused by elastic unloading from the loy temperature plastic
state, and theilr magnitude is relatea-both to the extent of plas-
tic straining during cooling, and to the extent of the unloading
path. These two factors, of course, Will be more pronounced
when the cooling temperature is lower.

Figure 5-18 shows the loading surfacés of the composite
during various stages of the heat treatment. The intercept of

the yield surface with the 12 = axis indicates the propor-

33
tional 1limit of the composite in tension in the fiber direction.
It is observed that the cooling sequences (c) and (d) cause an
increase in the proportibnal limit of the 6061-T6M AL-B composite
in tension from approximately 40 ksi to 100 ksi. This figure

also illustrates the kinematic motion of the loading surface in

the IlIz—plane during, thermal changes.
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5.6 Thermal Stresses in 7075 AZ-B Composites

The investigation of thermal stresses in the 7075 Alum~

inum must inciude the effect of the dimensional changes due to

metallurgical transformations during aging. The dimensional

changes have been described in Reference (48], and appear to be

rather significant in the 7075 aluminum. This was not the case

‘with 6061 Aluminum considered earlier, where such effects were

negligible. Figure 5-19 shows the unit dimensional change AL/L,

and also the yield stress as a function of aging time at 250 deg.

F. The aging time for the ?075 AL-B composites considered here is

25 hours. The matrix yield stress variation before and after aging

with respect to temperature has been estimated from the data in

References [U47] and [48]. The following heat treatment sequences

have been investigated using the propdsed plasticity theory:

(a) Quenching from 862 deg. F.

to 70 deg. F., followed by

aging at 250 deg. F. for 25 hours. This corresponds to T6 treat-

ment. The microstresses in the matrilx
face during the T6 temper are shown in
to aging temperature did not causé any
there is a discontinuous change in the
temperature. This 1is an'effect of the

aging temperature, and is more clearly

at the filber-matrix inter-
Figure 5-20. The reheating
plastic straining‘ but
microstresses at the aging
dimensional changes at the

visible in Figure 5-21,

where the matrix and fiber microstresses'are given for both the

actual dimensional change, and fér a zero dimensional change.
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(b) Quenching from 862 deg. F., to ~320 deg. F, and aging
énd cooling as in (a). This corresponds to the T6M temper.

This case has been selected as an illustrative example in Append-
ix VIIT. The microstresses in the matrix at the fiber-matrix
interface during the T6M treatment, are shown in Figure 5-22,
Here, there eﬁists plastic strailning during the period of reheat.
ing to the aging temperature. Figure 5-23 shows the stresses in
the composite at the end of T6M temper. It is seen that the T6M
temper produces considerably smaller microstresses than the T6
tempef, and the distribution 1s entirely different. These effects
are attributed to the plastic deformation sequence in the matrix
during the heat treatment.

The loading surfaceé of the 7075 AL-B composite at various
stages of the heat treatment are shown 1n Figure‘5~24. The T6M
treatment gives a somewhat higher proportional 1imit than T6 treat-
ment in simple tension. .

It has been observed that the.cooling of 7075-T6M AL-B to
-320 deg. F. or -450 deg., F., did not affect the microstresses as
in the case of 6061-T6M AL-B. This can be easily observed from
Figure 5-22, where the equivalent stress o does not attain the
magnitude of the yield stresses during cooling after aging. The
same is true for T6 temper (See Figure 5-20). Therefore, it does
not appear that a change in the microstress in the two 7075 AL-B
composites can be achleved by a heat treatment that would not
affect the metallurgical characteristics., Nor doces it seem that
such treatment 1s necessary, slnce both the micfostresses, and
the proportional 1limit of the 7075—T6M Al-B composite are quite

favorable.
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5.7 Thermal Expansion Coefficients

for B-AL Composites

Since the composite laminae experiences plastic straining
during the heat treatment, the thermal expansion coefficients vary
between the elastic and plastic states. These effects should be
considered in problems involving heat treatment of composite lam-
Inates and other structures. The thermal expansion coefficients
of B-Af£ composites have to be determined by the proposed plastic-
ity theory, the procedure being outlined in Appendix IX.

Figure 5-25 shows the variation of the thermal expansion
coefficient for 6061 AL-B composites during the T6 and T6M tempers.
The coefficient of thermal expansion in the fiber direction, Oug»
is about equal to that of the fiber, df, when the matrix is fully
plastic and increases in the elastic case, Similarly, the coef~
ficient of thermal expansion in the transverse direction, Oug
1s nearly equal to that of the matrix, am, for a completely plastic
matrix, and decreases 1n elastic case.

Figire 5-26 shows similar results for the 7075 AL-B

composites.
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5.8 The Effect of Residual Microstresses
on the Fatigue Limits of the B-AZ

Composites¥

The microstresses which were found for the B-Af composites
in Figures 5-12, 5-14, 5-16, 5-17, 5-21, and 5-23 can be used to
evaluate, at least tentatively, the fatigue limits (at 106 cycles)
of the composites for loading in the fiber direction, and the ef-
fect of the various heat treatments on these limits. The evalua-
tion procedure is described by Dvorak et al. [SO]. In principle,
the fatigue 1limit of the composite can be derived from that which
has been experimentally established for the matrix material, on
the premise that the matrix or fiber stresses during the cyclic
loading do not exceed the fatigue limits of thg respective mate-
rials. This assumption was successfully tested on a number of
as-fabricated 6061 AL-B composites, and other composites by Dvorak
et al. [50]. Also, available data from tests on heat treated
composites were examined by the same authors and showed a good
agreement. However, the number of test results available were
too small to establish a definite relationship for the latter
group. Therefore, the following results should be regarded as a
-very tentative basis of a possible working hypothesis, but at

least reflect the relative effect of the internal microstresses

¥The author wishes to thank Dr. G. J. Dvorak for the reéults of
this section.
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on fatigue strength of heat-treated composites.

Figure 5-27 shows the Goodman diagram for the 6061-T6
aluminum alloy, which was derived experimeﬁtally in Reference
[51]. These stress magnitudes were considered admissible for the
033 stresses in the matrix if the fatigue failure of the maﬁrix
was to be avoided. Then, the average matrix stress 033 was cal-
culated by superposition of the average residual stresses in the
matrix_Which were evaluated in this work, and of the matrix
stresses caused by the composite load applied in the fiber direc-
tion. The latter stresses were derived from the rule of mixture
equation. The resulting curves for the 6061-T6M AL-B, with and
without subsequent cooling to -450 deg. F., are‘shown in Figure
5-27. The dashed line refers to the as-fabricated 6061-0 A£-B
composite, assuming that both the fatigue and yield strength of
the matrix are equal to 12 ksi. The horizontal portion of this
line was verified experimentally for several 6061 AL-B composites
in Reference [51]. The sloping part of the dashed line indicates
a limitation caused by the boron fiber fatigue limit which was
selected as 300 ksi. Such limitation does not affect the temper-
ed composites, matrix fatigué failure always precedes that of
the fibers. |

Figure 5-28 shows similar results for the 7075 AZ-B
composites.

It 1s observed that the reduction of the residual stress-
es in the matrix by heat treatment does indeed hold a promise for
improvement of the composite fatigue limits. However, more exper-

imental work is needed to verify the calculated curves of Figures

5-27 and 5-28.
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5.9 Conclusions

1. The plasticity theory proposed in Chapters III and IV,
coupled with the thermomechanical analogy developed 1n this chap-
ter, makes it possible to evaluate the residual microstresses in
metal matrix fibrous composites during heat treatment. The com-
parison with the available in-situ experimental measurements of
these microstresses indicates that .the theoretical predictions
are very accurate.. |

2. The microstresses in 6061 AL-B composites evaluated
for T6 and T6M temper were found to be very high, and unfavorably
distributed in the matrix. Also, the ppoportional limit for
loading 1n the fiber direction was fégnd to be rather low. The
new heat treatment consisting of cdoling the tempered composites
to =320 or -U450 deg. F., changes the résidual stresses in the com-
posilte without changing the metallurgical characteristics of the
matrix. The thermal loads imposed by these cooling cycles cause
plastic flow 1n the matrix. Elastic unloading follows during
reheating to the room temperature. As a result of these.treat—
ments, the microstress distribution in the matrix improved dras-
tilcally, and the proportional limit of the composite increased

by a factor of 2.5.
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3. The microétresses obtained for the T7075-AL-B compos—
ites for T6 and T6M tempers were more favorable than those ob-
tained in case of 6061 AL-B composites.' It was found that the
stress distribution in the T6M case are most favorable, and the

proportional limits were high for both tempers. No improvements

of the microstress distributions, or of proportional limits could

be achieved by the new heat treatment as in the case of the 6061
AL-B composites.

4., The thermal expansioh coefficients of the 6061-T6
A£-B, 6061-T6M AL-B, 7075-T6 AL-B, and 7075-T6M AL-B were eval-
uated as functions of temperatures during heat treatment. It
was found that significant changes of both axial and transverse
thermal expansion coefficients are caused by plastic straining
of the matrix during the heét treatment. .

5. Tentative calculations were made of the expected
fatigue 1limits of the heat treated cohposites. It was found
That the process designed to reduce the residual stresses in

the matrix may also significantly improve the fatigue strengths

of the composites.




CHAPTER VI.
SUMMARY, GENERAL DISCUSSION, AND

RECOMMENDED RESEARCH

The plasticity theory for fiber-reinforced metal matrix
composites formulated here is based on micromechanical consider-
ations. The microplastic flow caused in the axisymmetric deforma-
tion mode is related to the macroscopic behavior of the composite
through the hardening and flow pules. The salient features of

the formulation of the plasticity theory willl now be summarized.

6.1 Summary

The plastic deformation of a fiber.reinforced composite'
can be represented by a set of five invariants which are functions
of the applied composite stresses, The first two invariants Il
and 12 are responsible for the axisymmetric deformation in the
composite. The axisymmetric deformation mode is pharacterized by

uniform normal composite stresses on planes parallel to the fiber,

(88)
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and an axial composite stress on a plane perpendicular to the
fiber. When the composite is loaded into plastic range in the
ax;symmetric deformation mode, the resultihg microplastic flow
produces nonrecoverable strains and residual stresses in the
composite. Under the assumption that ylelding always starts in
the matrix at.the fiber-matrix interface, it has been established
that the subsequent yield surface is ideritical to the initial
yield surface translated to a new position in the IlI2—plane,
and thus establishing the kinematic hardening.in thils plane.

. During microplastic flow, for loading in the axlisymmetric
mode, it has been found that three types of microstress increments
take place due to a composite stress increment in the matrix at
the fiber-matrix interface.. These three microstress increments
correspond in turn to two components of the applied stress incre-
ment. The first of the two components of the composite stfess
increments corresponds to an isotrépic microstress increment, and
the second to a neutral elastic microsfress increment. It has
been established that the former type‘of ﬁhe composite stress
Increment is fesponsible to the translation of the loading sur-
face in the Illz—plane. On the assumption‘that the first compon-
ent of the composite stress increment is always in the radial
direction, the Hardening Rule I has been formulated. Later it
has been found that there exists a special direction in . the IIIZ-
plane for each loading point, such that, if loading takes place
along this direction only isotropic microstress change results
during plastic flow. This finding resulted in fhe formulation of

a more accurate Hardening Rule IT. The plastic components of the
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composite stress increments have been determlned by using the
flow rule based on normality. The proportionality constant in
the normality condition has been determined by-an estimate of
the total strain in'the fiber direction. The proposed hardening
and flow rules have been verified by using the finite element
method. The égreement between the results predicted by the pro-
posed theory and the finite element method has been very‘
satisfactory.

In order to determine the microstresses in the entire
compoéite under axisymmetric deformation, an approximate solution
has been developedf 'The solution has been based on composite
cylinder idealization of the composite. .Again, comparisons be-
tween the results obtained from the approximate microstress solu-
tion and the finite element method, showed a very séﬁisfactory.
agreement. | |

Finally, to determine the fesponses of composites under
thermal loading, a thermomechanical aﬁalogy has been developed,
such that the microstresses and composite strains during thermal
loading can be evaluated by solving an associated problem of ioad—
ing in the axisymmetric mode. The thermomechanical analogy is
equally valid for determining the effects of volume changes in the
constituent phases of a composite due to metallurgical transforma-
tions during heat treatment. By modifying the proposed plasticity
theory to account for the change in matrix Yield stress due to
temperature changes, serval heat treatment problems have been
solved. The results obtained agree with the existing experimental
results. On the basis of the proposed plasticity theory, new heat

treatment sequences that may improve the initial yielding, fatigue
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and fracture behavior of boron-aluminum composites have been

proposed.

6.2 General Discussion

Effects of microplastic flows occurring during plastic
deformation are related to the macroplastic deformation of the
composite in the axisymmetric deformation mode. The constraint
offered by the elastic fibers is essentially reflected as the
kinematic motion of the loading surface during plastic deforma-
tion. The hardening rules predicting the motion of the loading
surfaces are based on the study of thé microstresses in the métrix
at the fiber-matrix interfaces. The Hardening.Rule I is a simple
one, and could be easily incorporated in a general plasticity
theory. The Hardening Rule II which 5ffers more accurate predic-
tion of the composite behavior is not as simple; but nevertheless
could be incorporated in a general plasticeclty theory, if more
accuracy 1s required. Either hardening rule gives sufficiently
accurate prediction of the kinematic hardening behavior in the
axisymmetrib deformation mode, both under mechanical as well as
thermal loads. The flow rule proposed is closely related to the
hardening rules in its formulation, and gives accurate prediction
of the composite plastic strains.

The microstress solutidn formulated for a composite
cylinder under plastic‘flow 1s an approximate one, the approxima-

tion introduced being that, the regions remote from the fiber-

matrix interfaces afe controlled mainly by the interface response.
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This 1is due to the coupling of the ﬁardening rules which
essentially monitor the interface responses,'ahd the microstress
solution for radial loading of a stress free composite cylinder.
A consequence of the above is that, the solution procedure and the
assoclated assumptions may break down under severe reversed plas-
tic flow in the matrix, in which instance, the plastic flow may
no longer start at the interface but in a region remote from the
interface. However, it should be noted that‘the kinematlc motion
of the loading surface is still expected because of the assurance
of the existence of a residual stress field that could translate
the loading surfaces, the contained nature of the microplastic
flow, and the well known shake down theorems [55]. Under moder-
ate plastic flow the procedure of determination of the micro-
stresses 1s expected teo give reésonably accurate results on the
assumption that, even if the yielding were to start in a region
remote from the interface, it would spread rapldly towards the
interface within a short segment of a loading bath. ,

The above suggests that a multipoint 1nput into the
hardening rules instead of the single interface point may be
required under severe reversed plastic flow. The loading sﬁrface
in that situation wouid be the interior envelope of all the yield
surfaces corresponding to the different points selected. The
residual stresses which are responsible for the translation of the
yield surfaces, being different at different poiﬂts selected
move the respective subsequent yield surfaces‘to different posi-

tions. Thus, the centers of the subsequent yield surfaces would

‘move according to different rules depending upon the nature of
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the residual stresses generated at the selected points. The new
loading surface would then be given by an interior envelope of all
the subsequent yield surfaces. However, 1t.should be noted that
the loading surface obtained by the interface controlled hardening
rule of the present work is an upper bound of the true loading
surface, or any multipoint controlled loading surface suggested
(See Reference [56] for proof).

The plasticity theory developed is useful for the axi-
symmetric part of the overall deformation, and gives the effect
of the invariants I1 and I2. The influence of the invariants
I3, IM’ and 15 on the plastic deformation is yet to be studied.
However, it is the opinion qf this investigator, that, because
of the relative closeness of the initial yield and limit loads for
composite stress systems corresponding to these invariants, no -
significant residual stresses could be stored in a composite made
of a non-hardening matrix. In sucﬁ céses it would seem that an
elastic-perfectly plastic idealization of the deformation behavior
is appropriate for stress systems corfesponding to these invar-
iants. The hardening in 1112-plane would however influence the
yielding in these stress systems. Further investigations on these
aspects 1s suggested.

The thermomechanical analogy formulated is an effective
tool in the determination of the residual stresses and the mechan-
ical behavior of heat-treated composites. The major obstruction
in the way however is the lack of experimental data on the
behaviour of the matrixalloys of the metal matrix composites during

heat treatment. The variation of the yileld stress during the heat

treatment and the volume changes due to metallurgilcal
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transformations during aging for the aluminum alloys used in the
ﬁresent work have been estimated from the available experimental
data. As evident from the results obtained for the two boron-
aluminum composites made of 6061 and 7075 aluminum alloys, the
variation of the yleld stress plays a very important role and
affects both fhe magnitude and distribution of the residual

microstresses in the heat-treated composites.

6.3 Recommended ‘Research

Based on the earlier discussion, as well as the ideas that
crossed the mind of the author during the course of the present
work, the following areas of research seem to be of interest in
the extension, refinement, and application of the present work.

1. Multipoint coﬁtrolled hardening and flow rules.

2. Interaétion between axisyﬁmetric and shear deformation
modes.

3. Effects of cyclic loads where there 1s reversed plas-
tic flow.

i, Effect of strain hardening of the matrix material on
the hardening and flow rules of the composite.

5. Experimental verification of the hardening and flow
rules, and also the residual stresses in heat-treated composites.

6. Experiments for the determination of the variation of
yield stress during heat treatment and the Voluﬁe changes during

aging of the matrix materials.
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7. Investigation of new heat-treatment sequences that
may improve the iniltial yleld, fatigue and fracture behavior of
heat—treated composites.

8. Kinematic hardening in multilayered composites where
each layer 1s made of a uniaxial fibrous composite. 1In these

materials kinematic hardening is expected in the entire normal

stress space as well as for the transverse shear stress.




PART II |
PLASTICITY THEORY OF MULTILAYERED

COMPOSITES - INITIAL YIELDING .




CHAPTER VII.

INTRODUCTION

The initial yielding in composites under exfernallyapplied'
composité fractions, is primarily governed by the micromechanical
interaction between the constituents. In a unidirectional fiber—
reinforced composite, one should conéider the interaction between
the parallel fiberé and the'matrix.i On the other hand, in a multi-
layered composite made of a' series of unidirectional fiber-
reinforced composite layers, one should consider in addition, the
interaction between the non—parallel fibers in.two successive |
layers. -

The initial yielding of unidirectional fiber-reinforced
composites has been stﬁdied earlier hy Lin et al. [lsj and Dvorak
et al. [16]. The interaction between the parallel fibers and
the matrix has been succesgsfully included in the analysis by the
analysis of representative volume element of the composite
idealizations with appropriate boundary conditions. Howéver,.to

the author's knowledge no such solutions are avallable for the

multilayered composites.

(97) -
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The purpose of the Part II is to evaluate the micro-
stresses and construct the initial yield surfaces for multi-
layered composites under external composite tractions. The
multilayered composites considered are made of unidirectional
hexagonal composite layers, and the fibers in two successive
layers are perpendicular to each other (0-90 composite) .

The analysis consists of two parts, namely: the "Regqu-~
lar Solution" which neglects the interaction between the fibers
in two successive layers (cross-over effects): and the "cross-
over solution" which includes the cross-over effects.

On the assumption, that the Saint-Venants principle [57]
is applicable for the cross-over effects, the microstresses far-
ther away from the interface of two successive layers (layer-layer
interface) may be evaluated by the regular solution. 1In the vicin-
ity of the layer-layer interface the microstresses are given by
the cross-over solution. One could consider the two solutions
separately, and construct the initial yield surfaces corresponding
to the microstresses obtained from the two solutions. The initial
yield surface for the multilayered composite is then given by the
interior envelope of the yield surfaces obtained by the two solu-

tions.




CHAPTER VIII.
REGULAR SOLUTION

In order to construct the regular solution, the multilayer-
ed composite 1s considered as a material consisting of a series
of "balanced" anisotropic layers with different elastic moduli.

A balanced multilayered composite is defined as a'compositebwhich
when acted upon by uniform-cdmposite strains on the principal
planes of the_composite do not produce any bending effects. This
assumption implicitly wuncouples the composite normal and shear
stresses. An example of a balanced multilayered composite is,

a three-layer composite; the top and bottom layers of equal thick-
hess made of one anisotropic materiél, and the middle layer of
twice the thickness .of the other two made of another anisotropic
material; the principal planes of anisotropj of the two materials
being parallel.

In the present chapter one half of the three-layered
composite discussed- above 1s considered (Figure 8-1). The total
thickness of the model is 2 t. The x and y axes'lie in plane
parallel to the interface of the two layers, and the 2z axis in a

direction perpendicular to the interface. The principal axes of

" anlisotropy are assumed to be coincident with the xyz-directions.

(99)
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The modei.is subjected to composite normal stresses, Sll’ 822,
and 833 in the directions x, y, and z, respectively; and composite
shears 812’ 813; and 823 in the planes xy, xz, and yz, respective-
ly. Now the problem is to find the individuai components of the
applied composite stresses, acting on the two individual layers.

The microstresses in the individual layers could then be deter-

mined by considering the nonhomogeneities in the layers.'

‘8.1 Solution for Normal Stresses

Let {%ll E22 E3%> be the normal'cdmposite strains produced_
under the action of the normal composite stresses {Sll 822 S3é}
in x,.y, and z directions, respectively. (The: braces { } always
represent a column matrix; the elements may be listed horilzontally
-~ or vertically). The strains produced in the individual layers

(Figure 2-1) may then be written as

<%ll E22 (E33 + d335> - (8.1)

R T U
{Exx B Egy > - <E11 B,y (Egq - d33)> (8.2)

L L L>
<Exx Eyy E,, are strain in the lower layer (Figure 8-1),
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U U U
{?xx Eyy Ezzt> are strains in the upper layer, and d33 is the

antisymmetric component of the z-strain in the two layers.
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Let [CL] and [cU] ve the elastic moduli of the lower and

upper layers, respectively, when considered independently for

. L q , U
normal strains, and <Sxx } and {: Szz > be the

stresses in the two layers due to }. The stress-

strain relations for the individual layers are as follows:

Lower layer

L L A L., L, L
[c™] {Exx zz} - {Sxx Syy Szz } (8.3)
Upper layer
U U U v\ U, U U
[c-] <EXX Eyy EZZ } = <SXX Syy SZZ } (8.4)

From Equations 8.1 to 8.4

d33>

L L. _ L. L. L
[c™] {Ell B, E3?} + [cC ]{o 0 = <sxx Syy szz>
(8.5)
U . —
[cY] <Ell B, E33> - [ {o 0 d33} = {sxxU syyU SZZU>
(8.6)

For the overall equilibrium of the model (Figure 8—1)’

we require
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L U _
Sex * syy_ =28,
L U
+ -~
syy syy 2 S,
(8.7)
L _
Sz = S33
.
Sz - S33

Equations 8.5 to 8.7 constitute 10 equations for the 10

L 3 L g L g U U

E xx ? “yy ? “zz °?

unknown d E S S , and

33> B110 Epps B33 xx * Syy
U ‘
SZZ in terms of the appllied composite stresses Sll’ 822, and 833.

Solution of these equations yields the following relations for

unknown. ' . .
- 1 p U L U L U _ L T
9337 T, 05 {‘Csl “ 031 ) (C3p = C307) (G337 = C3 )>
33 33 - <
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1™t (s, | (8.8)
Soo
S33
-1
{Ell Ess E33 = |C] {511 S55 833 (8.9)
L ’ Ll coLo
wx Sgy Sgpp= [H'D {811 S, 833} (8.10)
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where
r N 7 W
L U U L
€13 = €13 |31 - C31
L1 I oo 1 L U U L
[cl =3 [[c™] + [c"1] + o T+ o5 <023 ~~Cy3 ><C32 - c32$
33 33 L I U
L
€33 = C33] {33 = C33
1g ‘ J \ J
(8.12)
r N\ ( \T
L U L -1
013 Ca1 = C3q [c]
1 L U L

a7 = rePirert o+

T Ty (%237 (€32~ €327
(c33 + 033) )

®33]" %33 7 %33 |
\ y, \ | J (8.13)
(CuY (. v L) -1
Cl3w C31 - 031 [C]

U U -1 U U L

(1’1 = reVrert - — 21— Jo, Ul jo l - el
: 33 33
.9l |c. Y.L
33 33 33

\ I ) (8.1L4)

In the above equations the matrix [C] represents the elastic
modull of the multilayered composite. The superscript T over

matrices indicates the transpose.
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8.2 FSolution for Shear Stresses

Let Sl2’

acting on the planes Xy, xz, and yz, respectively. We assume

8135 and 823 be the composite shear stresses

that each shear stress is uncoupled with the other stresses.

That is, application of a composite shear strailn produces only
the corresponding shear stress and none other. Thus, the stress-
strain relations in the shear for the two individual layers in

Figure 8-1 are

L. L._ L
Cuy Exy - Sxy
L. L _ L |
CSS EXZ = SXZ (8.15)
L _ . L
C66 Eyz N Syz
Un U _ U
Cuu _Exy Sxy
U U2 U
055 E,, Sts (8.16)

U U -
C66 Eyz &
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L L L U $) U
where CMM R 055 "C66 , and CUH s C55 R C66 are the elastic

' . L L L U 3) U
moduli; SXy s SXZ R SyZ , and SXy s SXZ s Syz are the shear

L
stresses; E L, E L, E » and Ex v E v E v are the shear

Xy Xz yz y ? Txz ? Tyz
strains; subscript L being lower domain, and U being the upper
domain (Figure 8-1).
Underlthe action of shear stresses S13 and 823,
layers of the model (Figure 8-1) respond in "seriles". One has to

the two

satisfy the equilibrium on the interface between the two layers.
This would rejuire that, the shear stresses in the two individual

layers be equal. Thus,

S L. S v S
xz ~ “xz =~ °13
(8.17)
L _ U _
Syz = Syz = 323_ .
The total strains are giveh by
_ L .U
B13 = Byp * Ey
(8.18)
_p L U
E23 = Eyz + Eyz

From Equations 8.15 to 8.18, we can obtain the overall stress

strain relations as

13~ 755 13
(8.19)

Sp3 = Cgg Eag
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where
L

— U L U
. Co5 = Cg5 Cg5 /(Cg5™ * Cgg57)
(8.20)

_ I U L U
Co6 = C66 Co6 /(Cg6 * Cgg )

The constants C and C66 represent the overall shear modulil.

55

Under the action of shear stress S the two layers of

12°
the model respond in "parallel".In this case, one has to satisfy
the compatibility on the interface. This would require that the
shear strains in the two layers be equal. Thus the governing

equations are as follows:

L _ U _
Exy = EXy = E12 (8.21)
L _ . L. L
Sxy = Cyy Exy
(8.22)
U _ U U
Sxy = Cyy Exy
S1, = Cyy Eqs (8.23)

Solution of Equation 8.21 to 8.23 leads to,

L
C
L _ "4y
Sxy - CMU S

12
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1. L U ‘ ,
Cuy = 3 ™+ Oy | (8.25)

Now, the stresses in the individual léyers corresponding
to applied composite stresses can be determined from Equations
8.10, 8.11, 8.17, and 8.24. 1In analogy with the normal stresses

(Equations 8.10 and 8.11) the shear stresses in the individual

layers can be written as

S,," 513L S,57 = [al] S5 Sq3 s23} (8.26)
312U 513U 823U = tGU] 312.3i3 523} - (8.27)
where ‘ : .
L
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8.3 Microstresses for

Regular Solution

Having determined the stresses in the individual layers
corresponding to an applled combination of the composite stresses,
we can determine the microstresses in the individual layers by
considering the nonhomogeneities. We shall assume that each
individual layer is made of a unidirectional composites with
fibers forming hexagonalAarrays. The fibers in two successive
layers are considered to be perpendicular to eéch other. Figure
8-2 shows an isometric projection of the composite under consid-
eration. The unidirectional composites with hexagonal arrays of
fibers have been solved in earlier studies [16, 17] for the
microstresses. These results will now be utilized in the formu-
lation of the regular solution for microstresses in a multilayered
composite.

Figure 8-2 shows the "local coordinate system" for the
representative volume elements, which are in correspondence with
the coordinate system of unidirectional chposites considered in
earlier studies [16, 17]. The transformation equations for the
stresses in the local and overall coordinate systems are as

follows:
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ol *y = 7t (o™ 0
(8.28)

{ou’l}' [TU] {OU’O}

(sto?y = by (g0 0y
(8.29)
{sU%y = U7 (Y59

o.._} are the

In these equations {o} = {o o o} o o
XX yy 2ZZ Xy XZ "yZ

microstresses; {S} = {SXX Syy SZz Sxy'SXZ Syz} are the composite
stresses; the first superscript represent t?e domain identifica-
tion, L for lower, and U for upper domain; the second superscript
for the coordinate identification, £ for local coordinates, and
0 for overall coordinates. Note that {SU?°} and 8V°C} are iden-

‘tical to {st} ana sV} determined in earlier sections. The trans-

formation matrices [TL] and [TU] are given by

rrby = | - » (8.30)




(ly =

lo o o = o

o
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[
o
o
o

o o O

(8.31)

In analogy with the microstress determination in

unidirectional composites [16, 17] we can write the microstresses

in the form

{o Ls2

}

{o V%)

where [A] is a 6 x 6

Reference [17].

[A] {stZ}
. (8.32)

(a1 {s'°%}

matrix which was referred to as [Z] in

The stresses {SL’O} and {SU’O} can be obtained in terms

of the applied composite stresses {S} = {S11 S 812 813 S23}

22

by combining Equation 8.10 with 8.26, and Equation 8.11 with

8.27, as

(7t sy
(8.33)
v[JU] (s}
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where [JL] is obtained by appropriate combination of [HL] and
[GL] in Equations 8.10 and 8.26, and [JU].by combination of [HU]
and [6"] in Equations 8.11 and 8.27.

Noting that the inverses of [TL] and’[TU] are their

transposes, and solving Equations 8.28, 8.29, 8.32, and 8.33 we

obtain
to ¥203 = (a7 (s}
| (8.34)
(o U203 = [aV7 (53
where
T
(a7 = %1 ra7 7Y [9%3, anda ‘
T
a7 = 797 a1 Y1 373

Equation 8.34 represents the regular mlcrostress solution
for a multilayered composite. The matrices [AL] and [AU] are
derived essentially, from the analysis of unidirectional fibrous

composite for different points in the composite domain.




112

8.4 Construction of Initial

Yield Surfaces

We can now determine the initial yield surfaces based on
the regular solution (Equation 8.34). The procedure is identical
to that used for the unidirectional composites [16, 17], except
the matrices [AL] and [AU] are used for the determination of the
microstresses. The procedure for the determination of initial
yield surfaces in briefly outlined below:

1. Select a path defined by

Sy=p /¢t t

11 Foo T3z Byp Tyg Togh (8.35)

in the {S} space, when t are known constants and p in an unknown

iJ .
defining the magnitude of the loading along the path.

2. Porm the Mises' yield condition for the microstresses
developed at a point due to composite stresses in Equation 8.35.

This is given by

T .
p° (63T [a17 [e] [at] {6y = ¥2 (8.36)

where [Ai] is the matrix defining the microstresses at the point
which is equal to [AL] or [AU] in Equation 8.34, Y is the yield

stress, and
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2 -1 -1 0 0 0
2 -1 0 0 0
2 0 0 0
[e] =%
6 0 0
SYM. 6 0
6
| _ _

Nofe that the left hand side of Equation 8.35 repfesents the
square of the equivalent stress.

3. Equation 8.36 yields two equal and opposite roots
for p. .Step 2 is repeated for all the matrix points. The
minimum value of the positive roots and the maximum value of the
negative roots for p, when substituted into Equation 8.35 give
two points on the yield surface along the patﬁ defined.

4, Steps 1 to 3 are repeated along several paths until

enough number of points are obtained on the required yield surface.




CHAPTER IX.

CROSS-OVER SOLUTION

In Chapter VIII we considered the regular solution of a
multilayéred composite assuming that, there is no interaction be-
tween -the fibers in two successive'layers. Such a solution gives
sufficiently accurate representation of the microstresses for
points farther away from the 1ayer—iayer interfaces. But in the
vibinity of the layer-layer-interfaces the microstresses are
bound to be affected by the presence of the discontinuity in the
material description. In 0-90 multilayéred composites, the fibers
being aligned in perpendicular diredtions in two successive lay-
ers, the discontinuity in the material description is caused by
an abrupt change in the alignment of the fibers acrosé the layer-
layer interface. In order to determine the microstresses in a
cross-over problem, one should include the layer-layer 1interface
in any representative model describing the composite. In this
chapter, two methods are discussed to include the effects of layer-
layer interface in the analysis. The first method is the two
layer method which involves selecting a representative domain near
the layer-layer interface consisting of a part of each layer,

adjoihing the interface of a multilayer composite in Figure 8.2.

(114)
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The second 1s the one layer method, and involves solving a
represéntative domain near the layer-layer interface consisting
of only one layer, the layer-layer interface being simulated by
approprilate specification of the boundary conditions, which will

be discussed later.

9.1 Solution Method

‘The solution method for the cross-over problems essentially
consists of: subjJecting the representative volume elements to
unit composite strains; solving the strésses in the coﬁposite by
analytical or finite element method [éO] for each composite strain;
evaluafing the microstresses due to unit composite stresses from
the unit strain responses. The procedure 1s identlcal to that
used for the unidirectional compositeé [16, 17]. 1If the finilte
element method were to be used then, the microstresses in each

element can be written as
{c} = [B] {E} | (9.1)

where {0} = {oxx Uyy_qzz Oxy Oy Oyz

{E} ={E,, E,, E

11 Eop B33 Eyp By5 E

12 713 23}

[B] is a 6 x 6 matrix for each finite element in the
composite, such that each column of [B] represents the micro-

stresses {g} 1in the finite element due to a unit composite strain.
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The microstress responses due to the composite stresses {8} can

be obtained by using the composite stress-strain relation, given

by
{8} = [c] {E} (9.2)

where {S} = {Sll 522 833 512 S13 823}
[C] 1is the composite moduli matrix.

By using Green's identities and the uncoupling between
composite normal and shear deformations as well as between the
shear deformations, it can be proved

[cl1=3% [[B] av : (9.3)
A%
where V 1is the volume of the representative volume domain in
which [B] are computed, and the integral is taken over the volume
of the representative volume element. The microstress responses
due to composite strains can now be obtained from Equations 9.1

and 9.2 as
{o} = [A] {S} (9.4)

where [A] = [BJ [C]-l
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9.2 Material Planes of Symmetry

The basis of the formulation of the boundary conditions
for the representative models of the cross-over problem which will
be discussed later, is the identification of the "Material Planes
of Symmetry". The material planes of symmetry are defined as the
planes about which the material properties are symmetric. In a
composite, these planes can be ldentified as the periodic planes
of the composite about which the composite repeats itself.

Consider a point 0 on the material plane symmetry as
shown in Figure 9-1. Let &, n, ¢ represent an orthogonal coordi-
nate system at the point 0, with § in the diregtlion perpendicular
to the materlal plane of symmetry, and n, rz lying in the plane.
Let the displacements of the point 0 be ug, un, u_, and the

g
Tn, T,, Where ¢

g’ g €
normal stress and Th, Tc_are the shear stresses on the plane in

the directions n and ¢, respectively.

stresses on the plane at point O be, © is the

It is observed that the displacements and stresses ét
points like 0 on the material plane of symmetry under the action
of the external loads, symmetric or antisymmetric with respect
to the plane, with symmetric boundary conditions have the pro-

perties shown in Table 9-1.
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Table 9-1. Boundary Conditions on a Material

Plane of Symmetry.

Loads u u u G.

Sym, Const. - - - 0 0

Anti-

- Const. Const. O - -
Sym.
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In Table 9-1. the displacements marked "Const." are
constant on the entire material plane of symmetry, the stresses
marked 0 are zero on the entire plane; and the quantities marked -
are unknowns to be determined. Thus, one can prescribe on a ma-
terial plane of symmetry three quantities, one displacement and
two stresses, or, two displacements and one stress.

It 1s interesting to note that if a composite can be
represented by a representative volume element, which is bounded
by the material planes of symmetfy, then, there 1s no coupling
between the normal and shear deformations, nor, between the shear
deformations. That is, if the composite is subjected to normal
composite strains, then, no composite shear stresses are generated,
and the vice versa. Also, if the combosite 1s subjected to a
composite shear strain, only the corresponding, shear stress is
generated and none of the other.'

Based on the concept of the méterial plane of symmetry
we shall now formulate the boﬁndary conditions for the cross-over

models based on the two-~ and one-layer methods.

9.3 The Two-Layer Method

The two-layer method for evaluating the fiber cross-over
effects involves the solution of a representative volume model of
the multilayer composite near the layer-layer interface consisting
of part of two successive layers. In Figure 9-2, this model can

be represented by a domain bounded by the planes x =0, x = a,
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y=0,y=a, z = Z1s and z = Z5e Where Z4 and z., are selected

2
such that the effects of layer-layer interfaée are attenuated near
these planes. In the present case zq and Z, are assumed to be O
and 2t, respectively. The dimensions a and t are selected from
the consideration that the individual layers are made of unidirec-
tional hexagonal composites, so that, a = R(w/(3.464 vf))l/z,

t = 0.866 a, where R 1s the radius of the fibers, and Ve 1s the

fiber volume fraction. It 1s observed that the planes x = 0; x=a,
y = 0, ¥y = a bounding the representative model are material planes
of symmetry. Due to the assumption that the plane z = 0 and z =

2t are sufficiently farther away from the layer-layer interface,
and the effects of layer-layer interface are attenuated at this
distance, even these planes can be considered as material planes

of symmetry, the symmetry beingiwith respect to the unidirectional
composites of which the layers are made.

Based on the above considerations, the boundary conditions
for the model of the two-layer method are formﬁlated as shown 1in
Table 9-2, under the action of the composite strains'Ell, E22, E33,
Note fhat the shear strains E and E

E and E

120 Ey3o 23" 120 E13»

are tensorial, and u, v, and w are displacements at a point in

23

X, ¥, and z direétions, respectively.




Table 9-2.

121

Boundary Conditions for a Two-Layer Model.

Strain State =0 X = a y=20 y = a z =0 z= 2t
u=—E11a/2 u—Ella/E v=—E22a/2 V=EZ?/2 w=4%3tw=E33t
Ell’E22’E33 Oxy 0 Oky =0 ny =0 GXy =0 Ory =()oxz= 0
Oy 0 Oyy = 0 Oyz = Q cyz =0 Gyz = Ooyz==0
v=—Ei2a/2 v=E12a/2 u=—§2a/2 u=EL?/2 w=0 w=20
E12 w = w =20 w =20 w =20 OXZ=O UXZ=O
Oyx OXX=O cyy=0 yy=o oyz=0 oyz=0
w=—Ei3a/2 'w=E13a/2 v =20 v =20 u=—EI§:u=Ei3t
E13 v = v =0 xy = 0 xy = 0 v=0 v=2_0
o] o, =0 o, =0 o _=0 o =0 o__=0
XX XX X7 yz ZZ 27
u = u=20 W=—E23a/2 w=E23a/2 v=—E13t v=El3t
E23 Xy xy=o u =4O u=0" u=90 u=_~0
o g._ =0 o._.=0 =0 o =0 o__=0
Xz XZ vy z27 VA
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9.4 The One-Layer Method

The two-layer method discussed earlier, requires excesslve
amounts of computer time and core if finite element method were to
be used in the solution. In order to avoid this and obtain the
solution more efficiently, a one-layer method will be discussed
here. In the one—layér method, the representative model of the
multi-layer composite in Figure 8-2 consists of a part of only
one layer near the layer-layer interface. In Figure 9-2 this
model is represented by the domain bounded by the planes x = 0,
x=a, y=0,y=2a, z = Zqs and z = t. The parameters a and t
are ldentical to those given fof the two-layer model discussed
earlier. The distance zq is again selected such that the effects
of layer-layer interface are attenuated at this distance. In the
present model the value of Zq is taken as -t. The plane z = ¢t
represents layer-layer interface.

In order to solve this model, the composite strains

and E are resolved into six associlated

E E 23

112 EBops B33 Byps Bigs
strain fields defined below:

E




123

1. Ejy = Eyy = Fpy
2. Ejy = -E,, = F,,
3. E._ =T |
33 733 (9.5)
e By = F,
5. Ej3= By, = F
6 E = =

. 13 E23 - F23

The strain fields associated with Fll’ F33, F12, and F13
are considered as "symmetric", as under the action of these strain
fields the displacements at a point (x = C15 ¥ = Cy, 2 = q3) in
the lower layer (Figure 9—2) are related to an identical point

(x = Ci15 ¥V = Chs 2 = 2t - c3) in the upper layer, the center of

the interface being fixed, are related by .

L U
u- = v . .
U
v =y (9.6)
L U | '
W o= ~w
L L L : .
where u~, v, w~ are the dispalcement at a point in the lower

U U
layer in x, y, z directions, respectively, and u » V. , w are the

displacements at an identical point in the upper layer. The
stresses at the corresponding points under the symmetric strain

flelds are related by

{o. Lo Lo Ls Lg Lg Ly. (¢ Ys Uy Ug V6 Vo U}(9,7)
XX Yy zz Xy Xz yz Yy XX 2z yX vz Xz
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If we conslider the layer-layer interface (Filgure 9-3)
under the action of symmetric strain fields, the dispalcements

at pointSA(x==cl, y = ¢y, Z = t) and B (x = ¢y, ¥y = ¢y, 2 = t)

which are symmetrically placed with respect to the line x y
are realted by equations similar to those in Equation 9.6, because
one can consider A to be a part of the lower layer and B as a
part of the upper layer, or vice versa. Thus, the boundary condi-

tions on the layer-layer interface for symmetric strain states

are as follows:

A, B
v, = up | (9.8)
w, = -Wg
u=v=w=20 at " x =y a/2, z =t

where u w, are displacements at point A and Ugs Vs VWp are

a> Var Y
are displacements at point B.

The strain fields associated with F22 and F23 in Equations
9.5, are considered as "antisymmetric", as under the action of
these strain fields the displacements at a point (x = cl; y = Xy,
7 = 03) in the lower layer (Figure 9-2) are related to an identi-
cal point in the upper layer (x = Chs ¥ = Cqs 2 = 2t - c3),the

center of the layer-layer interface being fixed, are related by
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L

u' = - v

L

vP = - Y (9.9)
WL - WU '

o Lo L L L L L_  U_ U __U_U_U_U
9%%x O%yy %2z %xy Y%z OYyz vy  UxX zZ Xy "yZ -XZ
(9.10)

If we consider the layer-layer interface (Figure 9-3)
under the action of antisymmetric strain fields, the displacements
at points A (x = Cis ¥ = Ch, 2 = t) and B (x = Cos ¥ = Cy5 2 < t)
are related by equations similar to those in Equation 9.9. Thus
boundary conditions on the layer-layer interface for antisymmetric

strain filelds are as follows:

A B
vy = - up (9.11)
Wp T Wp
u=vs=w-=20 "~ at X =y =a/2, z =t

The boundary conditions on the lateral faces are prescribed
on the consideration that these are material planes of symmetry.
However, one would encounter a difficulty in prescribing the bound-

ary conditions on the iateral faces for the strain states
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represented by F13 and F23 in Equations 9.5, because these faces
would no longer remain as the material planes of symmetry, and
would not fall in any case of Table 9-1. To overcome this dif-
ficulty one could solve four associated probléms: E13 with
boundary conditions in Equation 9.8 on the layer-layer interface
and boundary conditions in Table 9-2 on the other faces; E13
with boundary conditions in Equation 9.9 on the layer-layer inter-
face and boundary conditions in Table 9-2.on the other faces;
and two other similar problems with E23. Appropriate combination
of these four assoclated problems would give the solution for
strain states F and F

13 23
would give the solution for composite strains E13 and

in Equations 9.5. Uncoupling of F13
and F23
E23. Alternately, one could consider.a model similar to the two-
layer model and prescribe the boundary conditions in Table 9-2

to obtain a direct solution for E13 and E23.

The boundary conditions on tﬁe face z = - £t for the one-
layer model could be prescribed on the assumption that the influ-
ence of the layer-layer interface has attenuated at this distance.
As a result, the boundary conditlons on this face correspond to
those existing in unidirectional composite. It should be pointed
out that the choice of the distance z = - t of this face from the
layer-layer interface 1s arbitrary. One could as well consider
any distance equal to an integral multiple of t for this purpose.
If this face were to be located at z = 0, - 2t, - Ut, etc., then

the boundary conditions for this face would be identical to

those described for the two—layef model at z = 0 in Table 9-2.
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On the other hand 1f the face were to be located at z = - 3t;
z = - 5t, etc., then the boundary conditions.on this face would
be identical to those for a face at z = - ¢t.
Based on the above consideratlions the boundary conditions

for the one-layer model are stated in Table 9-3.

9.5 Microstresses for

Cross-0Over Solution

The microstresses for the cross-over models corresponding
to an applied system of composite stresses can be found from the
microstress solution for the composite strains by either method.
The solution procedure could be either analytical if one could be
found or a finite element solution. In the latter case the [B]
‘matrices in Equation 9.1 are first found. The [A] matrices in
Equation 9.4 can then be obtained by determining [C] by Equation
9.3. Care should be taken to omit the coupling terms correspond-
ing'to the normal stresses and shear straiﬁs, shear stresses and
normal strains, shear stresses and those shear strains that do not
correspond. Thié is necessary because, the models in both methods
represent oﬁly one half of a periodic domailn, and stresses in the
other half of the domain are complementary to thqse in the domain
considered by the models.

For the two-layer method the above procedure is directly
applicable as the [B] matrices (Equation 9.1) are determined dir-

‘ectly. On the other hand, for the oneélayer method one has to
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determine the stresses in the adjoining layer from the streés
identities in Equations 9.7 and 9.10; the solution should then
be uncoupled to obtain the [B] matrices.

Using the [A] matrices obtained for the cross-over models,
the initial yield surfaces can be constructed. The procedure for
the determination of the initial yield surfaces is 1ldentical to
that outlined in the preceding chapter. The procedure remains the
same except the [Ai] matrices in Equation 8.35 should be replaced

by the new cross-over [A] matrices.




CHAPTER X.
RESULTS, DISCUSSION, AND CONCLUSIONS

On the basis of the formulations made in Chapters 8 and 9,
a multilayered composite the layers of which are made of unidirec-
tional fiber-reinforced boron-aluminum combosites with fiber volume
fraction of 0.3, has been analyzed. The [A]-matrices corresponding
to the regular solution have been determined from Equation 8.34
by using the results obtained earlier in References [16] and [17]
for unidirectional fiber-reinforced composites, The [A]-matrices
corresponding to the cross-over problem (Equation 9.4) have been
obtalned by using the two-layer method discussed in Chapter IX.
The soluﬁioﬁ is fbund by using the finite element method [20],

with finite element mesh shown in PFigure 10-1.

10.1 Results

A computer print-out of the microstresses Oxx’ ny, ny,

their hydrostatic component o0, = 0 _ + 0 + 0,,» and

g 3 g "
Xz yz kk XX yy

the equivalent stress O corresponding to the composite stresses

Sll’ 822,.833, 512, 813, and 823 equal.to lOQ units are shown in

(130)
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Tables 10-1 to 10-6. In these tables the microstresses are

printed as SXX, SYY, etc. dinstead of oxx’ 0. > etc.; the hydro-

yy
statlc component as SKK instead of ckk; the equivalent stress as
EQS instead of ¥; the composite stresses as S11, S22, etec. in-
etc. Each line in these tables shows the

stead of S S

11° —22°
microstresses in four successive finite elements printed at the
beginning of the line under the column ELTS (for example, for the
line containing 53-56 under ELTS, the first 8 entries correspond
to the element 53, second 8 entries to element 54, third 8 entries
to element 55, fourth eight entries to element 56). The element
positions in these table are as shown in Figure 10-1. It should
be noted that, the elements not visible in Figure 10-1 are direct-
ly located below the immediate lowest element visible, and may be
in one of the other three rows,.the elements belng numbered sequen-
tially in the positive direction of yfaxis in the lower layer, and
in the negaﬁive direction of the x-axis in the upper layer.

The non-zero components of the microstfesses in the matrix
at the fiber-matrix interface in the lower layer are plotted in
Figures 10-2 to 10-7 at two sections, y = 5/8 and a = 7a/8, for

the cross-over problem. The stresses Opp> g

940 Oy’ vy’ Ory*Oey
are in radial coordinates, the ré¢-plane being lying in the
xzZ=-plane, r measured from x = z = 0, measured in the anti-clock-
wise direction from the x-axis (Figure»lO—l). The corresponding
regular solution is also shown for the purpose of.comparison
(except in Figure 10-3).

The initial yield surfaces based on both the regular'and

cross-over solutlons have been constructed in the sub-composite-

stress-spaces S11 - S22, S11 - 833, Sil - S12, and S11 - S13
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spaces. The composite stresses are normalized with respect to

the matrix yield stress (Y).

10.2 Discussion

The 0-90 multilayer composite has been analyzed for the
microstresses both for regions farther away from the interface of
two successive layers and also in the vicinity of the interface
under composite fractions. For regions in the fbrmer case, the
microstresses are given by the regular solution which is an un-
coupled solution derived from the analysis of unidirectional com-
posites, and for regions in the;latter case the microstresses are
evaluated from the cross—over‘solution. Two methods, two layer
method and one layer method, have been discussed for the cross-
_over solution. The two layer method 1s a simple one and gives
straightforward solution. On the other hand, the one layer method
involves linear transformation of composite strains fields into
assoclated strain fields; solving the crosé-over problem in terms
of the associated straln field; finding the stresses in the
adjoining layer by appropriate stress equalities; and finding the
desired solution from the solution of the associated strain fields.
The primafy advantage of the one-layer method over the two-layer
method is: 1in a finite element solution the computer time and
the core requifements are reduced almost by one-half in the for-
mer method compared to the latter, if the same finite element mesh

configuration were to be used.
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The microstress distribution in the matrix at the fiber-
matr{x interface for a multilayer B-AL (vf = 0.3) composite as
shown in Figures 10-2 to 10-7 is almost identical for both the
cross—over and regular solutions? for all the composite stresses.
Even the initial yield surfaces shown in Figures 10-8 to 10-11
are almost identical for both solutions. It is/seen from the
yield surfaces that the composite stresses acting on planes paral-
lel to the layer-layer interface of two layers generally increase
the stress concentrations, while the other composite stresses gen-
erally reduce the stress concentrations. However, these effects
.are not very significant. The reason for this is attributed to
the low fiber volume fraction of the»éémposite.

The rate of attenuation of the effects of layer-layer
interface reflected by the change in stress concentration discuss-
ed above is very rapid, and the microstresses reaches the regular
solution within a distance of t. This 1s evident from the micro-
stress distributions in Figures 10-2 to 10-7 where for § = 0 the
microstresses for the cross-over and regular solutions almost

coincide.

10.3 Conclusions

Based on the above discussion the following inferences
can be drawn for multilayered composites with low volume fractions.
1. Piber cross-over effects are minor for low volume

fractions.
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2. The only composite stresses that may possibly
increase the stress concentration are those acting on planes
parallel to the layer-layer interface. The stress concentration
due to the other stresses are reduced.

3. Yield surfaces obtained by fegular solution are fairly
accurate, and there is no necessity to consider the cross-over

A
effects for low volume fractions.

10.4 General Remarks and Suggestions

for Future Researchers

An accepted philosobhy in research has been to report the
successes, but not the failures. Howejer, in the present case -
even the contrary seems to be justified if one considers the
enormous time of both the researcher-es well as the computer,
and also the expenditure involved in the solution of the multi-
layered composites for the cross-over effects. We shall devote
this section to the failures and also the pitfalls which an unsus-
pecting researcher might encounter in the solution of the cross-
over problems. The author believes that these should serve as
the warning signs for the future researchers. |

Solution of the multilayered composites for the cross-over
effects by the finite element method is simple, at least in theory.
Howeyer, this apparent simplicity becomes an illusion when one
considers the astronomical memory requirements of these probleme.-

In spite of the "large" memory area available for the user on the
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IBM370/165 computer at Duke University, which is 1,000K (a quarter
million words) many finite element models for the cross-over
problems that have been attempted could not be accommodated in the
core, even with the relabelling available on the ELAS programs.
The memory requirement depends not only on the number of the
finite elements but also on the boundary conditions. For example,
the two layer model in Figure 10-1 requires about 700K memory for
most strain states. If one attempts to solve the same model as a
stress problem instead of a strain problem, by prescribing com-
posite stresses instead of composite strains with appropriate
boundary conditions, the limit of 1,000K memory would be exceeded.

Another hurdle in the solutidh;df cross—over problems by
finite element method is the accuracy. Under the computational
constraints discussed in the previous paragraph, there seems to
be no way to increase the number of finite elements without exceed-
ing the available memory. This only seems to suggest the desira-
bility of the one-layer method which requires a much smaller mem-
ory than the two layer method. However, a case of failure is
worth reporting in this connection: The solution of a boron-
aluminum multilayer composite for a volume fraction of 0.65 has
been attempted by using the one-layer method, the boundary condi-
tions in Table 943, and a finite element configuration identical
to that used in FigurelO-l. The results are not reported here
because there has been no satisfactory equilibrium check between
the stresses in several regions. The reason has béen attributed
to the lack of uniformity in the size of the finite elements. The

dimensions R and t (See FigurelO-1) are almost equal for a volume
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fraction of 0.65, which made the finite elements in the matrix
extremely small compared to those in the fiber. Incidentally,
the memory requirement for this problem has been about 700K for

most of the strain states.
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APPENDIX I

ELASTIC CONSTANTS

This appendix lists the elastic constants, the quantities
which are needed for evaluation of the microstresses at the inter-

face in Equation 2.4, the yield surface in Equation 2.16, and the

elastic composite strains €le, €2e. Specifically, the coefficients

of the [A] matrix in Equation 2.5, and the [k] matrix in Equation
3.28 are given. The dimensions of Ki3 are in pound-inch units,
K ’ = K ' .
and o1 12° .
The elastic constants of aluminum, boron, and beryllium

used extensively in the present work are as follows:

£(10° psi) a(10° psi) v
AL 10.5 3.95 0.3291
B 58.0 23.97 0.2098

Be ' 40.0 | 19.60 0.0204

(156)
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Coefficients of [A] and [X] Matrices

B-AL _ Be-Af

=0.68 V_.=0.30 V

Vf=0.30 Vf=0.50 Vf £

£70.50 V.=0.68

A, 1.1604 1.1069 1.0651 1.1161 1.0710 1.0411
A, ~0.0227 =0.0113 =-0.0056 =0.0703 =0.0377 =0.0196
Ay 0.7020 0.6792  0.6584 0.7843 0.7869  0.7844
Ay, 0.0422  0.0338 0.0293 0.1306 0.1130 0.1027
Ay 0.3689  0.4265 0.4481  0.3805 0.4752  0.5248
Asp 0.4300 0.3136  0.2529 0.5554 0.4358  0.3681
€, x 10°  7.8465 6.0316 4.7020 8.4976 7.0931  6.164
€, x 10° -2.3240 -1.5364" -1.1343 -2.3333 -1.297h -0.7236
<o x 10°  1.0338  2.9158 2.3343  5.1006  3.914k  3.2456




APPENDIX II
RESIDUAL STRESS FIELDS

In this appendix we shall prove éxistence of micro-residual
stress fields that could translate the matrix controlled initial
yield_sufface to any position without change of shape in the I112—
plane, for an arbitrary fibrous coépésite. Consider the compos-

ite being subjected simultaneously to the initial strains.prrm

e M
¢ p
microstresses ay {1 1 1} in the matrix and {“1 a] 033 }

. m f b f
e33 } in the matrix, {efr edd e33 } in the filber, and the

in the fiber, and the éomposite stresses Il = al’ 12 = a2' We-
note that the above combination of.stfesses and initial strains
satisfy the compatibility at the fiber matrix interface 1f we
prescribe uniform total strain fieldg in the transverse as well
as axlal directions. The equilibrium at the interface 1s satis-
fled because of the microstresses inithe transverse plane are
uniform. The equilibrium of the transverse stresses 1is already
satisfiéd, and the axial composite stress a2 can be equilibrated
by equating the rule of mixture resultant of the axial micro-
stresses to Gz. The uniform strain fields 1in the transverse

plane requires the initial strains epp and €6 be equal in both

matrix and fiber.
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Thus, the above forms an exact solution for a fibrous

composite of an arbltrary geometry subjected to the composite

= = m m
stresses Il = A, 12 a, and the initial strains epp o Y

m m m . f £ _ f f
— e33 ’ e33 in the matrix, and err R e¢¢ = err s e33

the fiber, subject to the following equations.

e in

Uniform total strain field in transverse direction requires

o
m 1 _ rf .1 _ f
err + 3—KI;1- = err + Ef [(l - \)f) (11 \)f: 33 ] (II—].)
Uniform total strain field in the axial direction requires
e o+ 3l— = e £ + L (-2 v, 0o, + o f] - (II=2)
33 V3K, 33 T E; £ %1 33
Equilibrium in the fiber direction requires
v of+(l—V)a=a (I1-3)
f 33 f 1 2

The above form three equations for the three unknowns o az,

f m f m f
and 033 in terms of (err - enn ) and (e33 - e33 ). The
microstress flelds for the above problem are as follows:
In the matrix
m m m, _ : -
In the fiber
f _f . £, _
{o.,. 94 933 } {oy o 033 } | (II-5)
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If we unload'the composite from the above stress state elastically

we introduce additional stresses. The net residual stress field

is then given by

In the matrix

Prp = o 1 - [A] oy | (II1-6)
0 _

P99 ! “2

p33m 1

In the fiber

r - |

Ppp = a; |~ [A] oy v (II-7)
f ) ; .

Poo %1 %

f [ ]
P33 ®33

where pijm and pijf are the residual stresses in the matrix and
fiber, respectively, the shear stresses being zero, [A] is a
matrix which varies from point to point in the composite (See for

example Equation 2.4).

The'matrix controlled yield surface, with the residual

stress state in Equation (II-6) is given by

10Ty = o) (T, = o)) (417 [edA) (1, - o) (I, - )3

-Y2 =9 | : | (1I-8)
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where the first termvis the square of the equivalent stress with
[c] defined by Equation 2.7, and Y 1s the matrix yield stress.
The maximum value of the first term is taken for the entire
matrix.

Noting that Equation (II-8) represents the yield surface
of a stress free composite for a; = a2_= 0, this equation is a
translated version of the stress free initial yield surface, the

new center being located at Il = 09, I2 = 05 in the IlIg—plane.

This indicates that for a given ioading point in the I.I,-plane

172
one can find an infinite combination of the parameters al and o,
in Equation (II-8). All combinations @, and o, are permissible,

1 2
because one can find a state of initial -strain in Equations (II-1)

to (II-3), corresponding to the selected combination.




APPENDIX III.

CONSTANTS OF HARDENING RULES

This appendix presents the constants of the initial yield
surface (Equation 2.16 for al = d2 = 0) which is in the form

+ k,I.I, + k. I.= -Y = 0, : (III-1)

and the matrix [R] in Equation 3.27. The matrix [R] depends upon
the current load level. The coefficients can he determined by

using Equations 2.16 and 3.27. A simplification of these equations

gives:

' -

Ry Hyp" o Hyp' ;-9
- (III-2)

1 1 -
Roq L_H21 Hyo I, = %
(] - a
Ry Hy,'t Hyo I, - %
1 - QO
Roo Hop "' Hyo'! I, - %

- —

(162)




The components of [H'] and [H''] are also presented.

Coefficients k, H', and H''
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B-AL Be-AlL
Constant

Vf=0.30 Vf§0.50 Vf=0.68 Vf=0.30 fo=Q.50 Vf=0.68
kl 0.4738 0.3548 0.2951 0.4072 0.2664 0.2000
k2 -0.5173 -0.3110 -0.2207 -0.6986 -0.4255 -0.3000
k3 0.1798 0.0929 0.0590 0.3062 0.1755 0.1178
Hll' 0.4205 0.4316 0.4307 =-0.1770 -0.0324 -0.0470
H21' -0.0357 -0.1453 —Q.2222 -0.6294 -0.6141 -0.6120
le' 0.1704 0.1255 0.1020 ~"0.7346 0.5661 0.4711
H22' 0.7014 0.7641 0.7964 1.2103 .1.1687 1.1448
Hll" 0.5173 0.3110 0.2207 ‘0.6986 0.4255 0.3000
Hzl" Of9u95 0.7097 0.5902  0.81“# 0.5329 0.4000
H12" -0.3595 -0.1858 -0.1180 -0.6124 -0.3511 -0.2357
H, 't =-0.5173 -0.3110 -0 -0.6986 -0.4255 -0.3000

no
n

.2207




APPENDIX IV
YIELDING WITH RESIDUAL STRESSES

Consider a composite with residﬁal stresses 1in x, y, z

coordilnates
}, (IV-1)

{p} = {p P

XX pyy Prz pxy Xz pyz

which may be different at different points in the composite.
The microstresses produced in the compesite due to appli-

catlion of external loads T could be obtained from the earlier

1j
‘results [16, 17] as

{0} = [2] {T} _ ' (IV-2)
where
{U} = {0'

{7}

i
—~—
.
=

(164)
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and [I] is defined in [17], and varies from point to point in
the composite.
The equivalent stress 6f the stresses obtained by super-
position of stress states (IV-1) and (IV-2) fbr a point in the

composite 1s given by,

5° = {p +0}T [(c] {p + o} (IV-3)
where
- 1 1 —
1 -5 -~ 0 0 0
1
1 -5 0 0 0
1 0O 0 ©
[c] =
SYM 3 0 0
3 0
3

From Equations (IV-2) and (IV-3)

52 = (0T 21T [c1 21 4m + 2 (03T [C] (21 (T} + {p}T [T {p}
(IV-4)

The Mises Yield condition for the microstress is given by

=y (IV-5)
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where Y yleld stress of the material at which the stresses are
being considered.
Define a radial path in {T} space by

{T} = p {tll-t (IV-6)

22 ¥33 12 13 ta3d

where t are known constants and p is a constant defining the

1j
stress level along the path {t}
Substituting Equations (IV-5) and (IV-6) into (IV-4)

We obtain

a;p® + agp + ag = 0 | (IV-7)
where a, = (837 [c] 01 -
a, =2 {p}' [C] (2] {t)
ag = {o}' [ {p} - ¥°

Equation (IV-7) gives two rooks p, and p, for p, p; being the
smaller and Py béing the larger. Equation (IV-7) should be form-
ed for all points in the composite (elements if the finite element
method 1s used to determine [£]). Then the algebraically largest
value of Py and smallest of Ps when substituted into Equation (IV
-6) for p, givés two points on the yield surface with the residual

stresses.
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The procedures could be repeated with different paths
With varying tij until sufficient number of points are obtained
on the yield surface. It should be noted that if the roots of
Equation (IV-7) are complex then the chosen path in Equation (IV
~6) does not intersect the yield surface.

In soﬁe cases, it has been found, that a nonradical path
defined by (T} = {t°} + p{ £t} where {to} and {t} are known
vectors, gives quicker results. The procedure however remains
same, except the vector {p} in the determination of the constants
as and 33 of Equation (IV-7) 1s replaced by {p} + [Z] {to}.

The stresses in the above analysis are in the Cartesian
coordinate system. However, the same analysis could be used eVen

in a cylindrical coordinate system.




APPENDIX V.

SIMPLE MICROSTRESS SOLUTION

A simple formula for thé microstresses in the matrix
could be-derived from the considerations in Chapter III. We
assumed that component {da1 da2} oﬁ phe composite increment
{dI1 dIz} causes always an isotropic stress change in the entire
matrix (Equation 3!16), and the othér component {(dIl - d“l)
(dI2 - dag)} causes always an elastic stress change. Thus, from
Equations 2.4 and 3.16, we can write the micro?tresses in the

matrix as

(Opy Ty 0337 =ap {1 1 1} + [A]{I; - o) (1, - ap)}
(v-1)

where [A] is found as a function of r, and ays o, are found from

elther hardening rule.

(168)




APPENDIX VI.
CYLINDER UNDER INTERNAL PRESSURE

(PLANE STRAIN)

Iﬁ this appendix we shall solve the problem of a hollow
cylinder under internal pressure under plane strain. This prob-
lem was originally solved by Hill et al. [41] and Hi11 [45]. A
solution to this problem is attempted here by a procedure similar
to that used for the composite cylinder in Chapter IV.

Consider a hollow cylinder of externel.radius a,.internal
radius b, made of an elastic-perfectiy elastic material. Let the
cylinder be loaded under internal preeeure p beyond initial yield-
ing, so that, the region b< r<p is plastiec, and the region
p < r< ais elastic, where r is the.distance measured from the
center of the cylinder, and r = o defines the elastic-plastic
interface.

Now, 1f the internal pressure is increased by dp, the
plastic zone spreads fromr =0 tor =P + d°. 1In analoéy with
the composite cylinder solution in Chapter IV, the following

'stress changes are assumed to have taken place during this time.

(169)°
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Plastic region (b < r < p)

d crrp = -dp

p = - ! ‘ -
4o, dp | (VI-1)

d 633" = -dp

Elastic region (P £ r < ga)

2 2
e a a
Aoy~ = =dp (55 - 1)/(%5 - 1)

r p
d°¢¢e = dp <§§ + 1)/(22 - - (VI-2)
r P

d033e 2 v dp/(%g - 1) | .

In these equations r, ¢, 3 define the radial coordinate system,
and v 1s the Poisson's ratio. The stress increments in the
elastic region correspond to the elastic solutlon of hollow cy-
‘linder of internal radius p and external radius a, with plane
strain condition, under internal pressure dp.

‘ The-stresses in the elastic region (p £ r< a) can be
written by considering the radial.stress at r = pas -p', where

dp'/dp = 1 as a consequence of the stress state (VI-1) 1in the

plastic fegion. Thus
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2 2
e _ v el a~ _
o,.% = ! a_ Qﬁ '
r

2
€ v /02
033 2 Vp /(p2 1)

The Tresca's yleld condition for 0¢¢ > 033 > Orr is

where Y is the yield stress.

Substituting for © € and 0__% from (VI-3) we get
¢ rr

2 2 '
f=2p ég/(ég - 1) - . (VI-4)

r p

In order to satisfy the yield condition at r = P we require £ = 0

at r = P. Thus, from Equation (VI-U4) we get
2
Y P |
p' = 5 (1 - ;5) (VI-5)

Now if we wish to propagate the plastic zone from r = P
tor =0 + dp by increasing the radial pressure at r = P from p'
to p' + dp', we require to satisfy the yleld condition at r =

P + dp at the end of the pressure increase. Thus
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of f
'5-5'— dp' + —g; dr o = 0 (VI-6)
From (VI-4) and (VI-6)
1 1
g—i— -2p' (VI-T7)

From (VI-5) and (VI-7), and noting dp' = dp

(1 - =) : (VI-8)

o
o)

[]
Q!Q-
helie]

1
o}

Now consider that the plastic zone has been propagated to r = ¢
by 1ncreasing the internal pressure. The stresses in the plastic
region (b £ r < ¢) can be considered in two parts:

1) Stresses developed during the time_when the point was
elastic.

i1) Stresses developed during the time when the point was

plastic. Thus

P=p =c
P
p g © { iglii do + f .Eglli ape (VI
S F ao ~ 9° 3o -9)
P=Db . P=1

where i, j = r, ¢, 3; oijo are stresses at the point at the initial
yleld; the second term corresponds to the part (i), and the third
term to part (ii) above. The derivatives d oije/dp and dcijp/dp

are obtained from (VI-2) and (VI-1), réspectively, by replacing
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the incremental variables with the derivatives with respect to
0.
° could be obtalned from

1J
(VI-3) and (VI-5) by substituting p = b and p' = p.

The stresses at initial yield o

Performing the integrations in (VI-9) by using (Vi-1),
(VI-2), and (VI-8) and simplifying we obtain the stresses in the

plastic region as,

2
rr 1 c c
- = - n (=) + —
Y | 2 r 2a2
P
o 2 :
¢ _ 1 _ in (&) + & c<pr <a ' (VI-10)
Y 2 r 5 2 - - '
a
P
933" ¢ ¢® - (1 - 2v)r?
3 = - fn (=) + -
r 2 : .
2 a

The stresses in the elastlc region can be obtalned from

(VI-3) and (VI-5) by putting p = ¢, as

rrf | 1 e | ef
Y 2 1,,2 a2
e
o] 2 2
¢ _ 1 c” . c° -
= 5 (5 +5%) (VI-11)
_ r a
e
o 2
33 _—_-\)9._..
Y 2
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The internal pressure corresponding to elastic-plastic
inteﬁface at ¢ can be obtained by integrating (VI-8) between
P =Db and P = ¢, and adding the internal pressure p° at initial

yielding, which is equal to p' for p = b in (VI-5). Thus

b=m & +30- ig—) (VI-12)

It can be observed that Equations (VI-11), (VI-12), and
the first two equations of (VI-10) are identical to those obtained
by Hill [45], except the notation is different here. The a3
stress in the plastic region given by the third equation of (VI-
10) is found to be slightly different-from Hill. It is speculat-
ed, that the discrepancy is due to the stress state (VI-1)
assumed in the plastic region. The Tresca yield condition used
is not influenced by‘the 633 stress, and consequently any selec-
tion of d033p in (VI-1) would not have affected the yield condi-
tion. It is expected that the procedure would yield better
results if Mises yield condition were to be used, in which case
all three stress components should be considered, and stress

state (VI-1) forms a major part of the stress increments in the

plastic region.




APPENDIX VII.

MODIFICATION OF HARDENING RULES

In this appendix, the Hardening Rules (I and II) formulated
in Chapter III will be modified to account for the change in the
matrix yield stress with temperature.

‘We noted in Chapter III that, "for a given point {I1 12}
on the loading surface with its centér at {al | a2}, if plastic
deformation were to occur, then there exists a special direction
in the I,I,-plane along which any incremental {dal da2} would be
directed".

Thus the hardening rules (Equations 3.13 and 3.15) may be

rewritten as

{do daz} = dn {2, 2,1} : (VII-1)

1 1 2
where dn is some constant and {2} is a known vector depending
upon the hardening'rulé, and is given by

for Rule I: {21 22} ={(I1 ~«al) (I2 - ﬁ2)}and
(VII-2)

for Rule II: {21 22} = {Rll Rgl}

(175)
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where Rll and R21 are obtained from Equation 3.27.

Thus, 1f at any loading point {IllIZ} on,a loading sur-
face, the yield stress 1s changed from Y to Y + dY, by keeping
the loads constant, then for dY < 0. The loading surface has to
travel in order to maintain the yield condition, the direction
of motion being governed by Equation (VII-1).

In order to determine dn corresponding to the change of
yield stress, dY, one can use the yield condition at the end of
the yield stress change (consisténcy equation), which is given by
of

A e, + do, + 20 ay (VII-3)

arf
aal 1 Bal

where f 1s the loading fun-tion definéd by Equation 2.16, and

daI, = dI, = 0.

1 2 " : .
By noting %g— = - g£ and gg = - %%-, Equations (VII-1)
1 1 2. 2 '
and (VII-3) yield,
| o
dn = (VII-N)
d of

S SR S
1 Il' 2 I2

Thus, if the yleld stress were to change during a load increment

{dIl dIQ}, the Hardening Rules may be rewritten as

do [ar -3/ 31, 2
= - dy +dn (. (VII-5)

Bf/BIl L,
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dy 1s identical to d“I or d“II in Chapter III, but should be
determined from Equation 3.14 or 3.26, by reﬁlacing {dIl dIg}
with {(dIl + dngl) (d12 + dnzz)}, respectively, with corresponding
{zl 25} from (VII-2). We note that, the change dY of the matrix
yileld stress in (VIIjM) may be because of any cause including a

ay

change in temperature, in which case 4y = 35 d9, where 6 is the

temperature.




APPENDIX VIII.
TLLUSTRATION OF USE OF THERMOMECHANICAL ANALOGY

In thls appendix we shall illustrate the use of thermo-
mechanical analogy 1in the solution of heat -treatment problems.
~First; the general numerical proce@ure will be outlined, then

the numerical procedure will be illustrated by an example.

A. Numerical Procedure:

1. Select the temperature'rariation 8(t) as a function
'of t (numerical step) depending upon the temperature history of
- heat-treatment. | |
| 2. Find the unit dimensional changes due to volume changes
- of the matrix material during aging from experiments and incorpor-
- ate them in the procedure by specifying it as a function of ¢t.
3. Find the matrix yield stress variation as a function
of tepperature and aging time from experiments and incorporate
thls 1n the procedure by specifying it as a function of ¢t.

4, Determine the value of S(t) as a function of t by

using temperature vaxiation 9(t) in Step 1 and unit dimensional

(178)-
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changes 1n step 2 by using the thermo-mechanical analogy (Equa-
tion 5.5). |

5. Determine the first part of the solution by Equation
5.2.

6. Determine the second part of the microstress solution
by using I(t) = I,(t) = - S(t) and Y(t) found in Step 3 in the
Hardening Rule (I or II) in Appendix VII, and the approximate
microstress solution for the cylinder in Chapter IV, as follows:

(a) Determine the initial yield along the path I, =
12 for yleld stress Y(0). .The shift .of the yileld surface is zero

for this part of the problem at this step. 1i.e., & = 0, = 0,

1 2
" (b) Find the change of I, and I, during t and t + At
as Il = 12 = - %% At, and the change in yield stress as
AY = %% At, where S is as found in Step b and,Y in Step 3.
of of ' '
(¢) 1If STI AL, + Ef; AY > 0, find Aoq and Ao, by

using the Hardening Rule (I or II); and determine the changes in
the microstresses as an elastic part due to AIl - Aoy and AI2 -
Aag, and as an elasto-plastic part due to Aal and Aaz using
approximate cylinder solution. Otherwise, determine the elastic
stress increment due to dI1 and dI2.

(d) Update the microstresses and the shifts of the
yield surfaces by the incremental values obtained in (e¢).

(e) Repeat (b) to (d) for the entire heat-treatment
history. |

7. Determine the complete solution of the heat-treatment

problem as a superposition of the two parts of the solution ob-

tained in Steps 5 and 6. The center of the yield surface at any
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step 1is located at I, = S(t) + al(t), I, = S(t) + az(t) in the

I1I2—p1ane.

B. Example: Heat Treatment of 7075-T6M AL-B

For the heat treatment of the 7075-T6M AL-B the steps in
numerical procedure are as follows:

1. Temperature variation selected is shown in Figure 5-14.

Steps 1-112: Quenching from.862 deg. F. to =320 deg. F.

Steps 113-140: Reheating from -320 deg. F. to 250 deg. F.

Steps 141-207: Aging at 250 deg. F. for 25 hours.

Steps 208-223: - Cooiing from 250vdeg. F. to 70 deg. F.

2. The experimental values of unit dimensional changes
during aging are shown in Figure 5419; and are incorporated in
the numerical procedure beﬁween steps 141-207 as shown in Figure
5-4.

3. The matrix yield stress variation 7075 AL in w state
1s assumed to be varying linearly from 1 ksi at 862 deg. F. to
28 ksi at -320 deg. F. The variation of yield stress during aging
1s shown in Figure 5-19. These variations arebincorporated in the
numerical procedure as shown 1n Figure 5-4.

4. The value of S(t) is determined by using the thermo-

mechanical analogy (Equation 5.5).
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5. The first part of the microstress solution is obtained
for the entire process by using Equation 5.2.
6. The second part of solution is obtained as in Step 6

in the numerical procedure.

7. The complete solution is obtailned by the superposition

‘of the solutions obtained in 5 and 6.




APPENDIX IX.

THERMAL EXPANSION COEFFICIENTS

In this appendix we shall outline a procedure to determine
the composite coefficients bf thérmal expansion from the composite
strains obtained from the plasticity theory in Chapter III, and
the thermomechanical analogy formulated in Chapter V, when a com-
posite 1s subjected to uniform thermal changes. The thermo-
mechanical analogy (Chapter V) states that a problem of a composité
subjected to uniform thermal change can be congidered as a super-
position of two problems, the first involving uniform strain
fields in the composite and subjected‘to a uniform composite
stress in all directions, and the second involving an elasto-
plastic composite subjected to uniform composite in all directions
(Figure 5-1). The composite stresses in the two problems are
equal and opposite and is given by S in Equation 5.5.

Now’ consider a composite subjected to uniform temperature
change A6. Ignoring AL/L in Equatlon 5.1 and substituting it in

Equation 5.5 we obtain AS corresponding to A8 as

o, - O
f m

(l/Km) - (1/K;)

AS = 3 AB (IX-1)

(182)
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1 t 3 t -—
The composite strains Ael 2 Aerr and A52 in the IlI2 plane
for the first problem can be obtalned from Equations 5-1, 5-4
and (IX-1) by observing that this is a problem of uniform strain

fields. Thus

l r = '=mf fmo:. -
5 Asl A€2 TR AB (IX-2)
m £
The composite strains Ael" and Aee" in the I1I2-p1ane

corresponding to the second problem (dI1 = d12 = -dS) can be
obtained from the plasticity theory in Chapter III (Equations 3.28

and 3.29) can be written as

de p
Ae.'' = — (k.. + k..) AS — —1— AS
1. K97 127 8% as
: ‘ IX-
dezp ( 3)
Tt - - - ——
A€2 (K21 + K22) AS IS AS

where Kij are the composite compliances and the derivatives of
the plastic strains delp/dS and degp/ds can be obtained by consid-
ering all the incremental parameters in Chapter III as derivatives

with respect to S, where I, = I, = S,

1 2
The total strain increments are a superposition of the

strain increments of the above two problems. Thus

Ae- = Ae_ ' + Ae_ 1
(IX-4)

Ae,. = Ae ' + Ae '
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From Equations (IX-1) to (IX-4)

. _ ’ - p
o S, W o N« %) c ek 230
A® - K - K, (1/Kp) - (/K ) 11 7 12 7 a8

- . - p
Aey : K op— Koo _ s (an o) e h e s ?52

(IX-5)

Now the composite coefficients of thermal expansion act in the

transverse direction, and Oua in the axial direction can be

obtained from Equation (IX-5) by usingAthe definitions

!
O

Ag
20
(1X-6)

®ea °

be,

AB

The elastic coefficients of thermal expansion can be obtained
from Equations (IX-5) and (IX-6) by settihg d€1p/ds and d€2p/dS

to zero and using the appropriate composite compliances.




APPENDIX X.

FIGURES
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Figure 1-1. A regular hexagonal model of a fiber-reinforced

composite, and repeating elementary domains.
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Figure 3-1. Schematic Representation-of Stress Increments in the Composite,

and the Deviatoric Stress Planes.
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Figure 3-2. Variation of directions of local stress vectors at
the interface of a composite cylinder for loading along

radlal paths 12 = 311°
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'inite Element Mesh.
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Matrix During Heat Treatment of the 6061-T6 AfL-B Composite.
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Figure 5-20. Microstresses‘at the Fiber-Matrix Interface, and
the Location of the Elastic-~Plastic Boundary (r = c¢) in the
Matrix During Heat Treatment of the 7075-T6 AL-B Composite.

Note the Effect of the Dimensional Change at the Aging
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Figure 8-1. One-~Half of a Three-layer Balanced Composite Made

of Two Anisotropic Materials U and L.
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Material plane of synrmetry

Figure 9-1. Schematic Representation of a Material Plane of

Symmetry in a Heterogeneous So1lid Made of a Matrix and

Cylindrical or Spherical Inclusions.
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Figure 9-2. An Elementary Model for the Cross-Over Problem of

the Multilayered Composite Shown in Figure 8-2.
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Figure 9-3. Layer-Layer Interface of the Elementary Model

Shown in Figure 9-2,
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Figure 10-4. Microstress Distribution in the Matrix at the

Fiber-Matrix Interface in the Lower Layer of a Multi-

Layered B-AZf (Vf = 0.3) Composite under S
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Figure 10-8. 1Initial Yield Surfaces for a Multilayered B- AL

11 ~22
Plane. c¢/0o Indicates Cross-Over Solution and Y is

(Vf = 0.3) Composite Loaded in S, .-S Composite Stress

the Matrix Yleld Stress.
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Figure 10-10. 1Initial Yield Surfaces for the Multilayered B-AZ

‘(Vf = 0.3) Composite Loaded in 811—812 Composite Stress Plane.
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very accurate. In addition, new heat treatment sequences that may im
prove the properties of unidirectional boron-aluminum composites are

scribed.

The second part of the study is concerned with composite laminate
Specifically, solution procedures are described for the determination
of microstresses in the laminae, and in the fiber crossover regions a
the interfaces between the laminae. Particular solutions are present
for the 0-90 deg. B-AfL laminates. The local microstresses, and the 1
tial yield surfaces of the laminates are found for the combinations o
applied composite stresses which are frequently encountered in practi
~applications.
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